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Abstract

Model-assisted estimators have attracted a lot of attention in the last three decades.

These estimators attempt to make an e�cient use of auxiliary information available

at the estimation stage. A working model linking the survey variable to the auxiliary

variables is speci�ed and �tted on the sample data to obtain a set of predictions, which

are then incorporated in the estimation procedures. A nice feature of model-assisted

procedures is that they maintain important design properties such as consistency and

asymptotic unbiasedness irrespective of whether or not the working model is correctly

speci�ed. In this article, we examine several model-assisted estimators from a design-

based point of view and in a high-dimensional setting, including linear regression and

penalized estimators. We conduct an extensive simulation study using data from the

Irish Commission for Energy Regulation Smart Metering Project, in order to assess the

performance of several model-assisted estimators in terms of bias and e�ciency in this

high-dimensional data set.

Key words: Design consistency; Elastic net; Lasso; Random Forest; Ridge regression; XGBoost.

1 Introduction

Surveys conducted by national Statistical O�ces (NSO) aim at estimating �nite population

parameters, which are those describing some aspects of the �nite population under study.
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In this article, the interest lies in estimating the population total of a survey variable Y .

Population totals can be estimated unbiasedly using the well-known Horvitz-Thompson es-

timator (Horvitz and Thompson, 1952). In the absence of nonsampling errors, the Horvitz-

Thompson estimator is unbiased with respect to the customary design-based inferential ap-

proach, whereby the properties of estimators are evaluated with respect to the sampling

design; e.g., see Särndal et al. (1992). However, Horvitz-Thompson type estimators may ex-

hibit a large variance in some situations. The e�ciency of the Horvitz-Thompson estimator

can be improved by incorporating some auxiliary information, capitalizing on the relationship

between the survey variable Y and a set of auxiliary variables x. The resulting estimation

procedures, referred to as model-assisted estimation procedures, use a working model as a

vehicle for constructing point estimators. Model-assisted estimators remain design-consistent

even if the working model is misspeci�ed, which is a desirable feature. When the working

model provides an adequate description of the relationship between Y and x, model-assisted

estimators are expected to be more e�cient than the Horvitz-Thompson estimator.

The class of model-assisted estimators include a wide variety of procedures, some of which

have been extensively studied in the literature both theoretically and empirically. When the

working model is the customary linear regression model, the resulting estimator is the well-

known generalized regression estimator (GREG); e.g., Särndal (1980), Särndal and Wright

(1984) and Särndal et al. (1992). Other works include model-assisted procedures based on

generalized linear models (Lehtonen and Veijanen, 1998; Firth and Bennett, 1998), local

polynomial regression (Breidt and Opsomer, 2000), splines (Breidt et al., 2005; Goga, 2005;

McConville and Breidt, 2013; Goga and Ruiz-Gazen, 2014), neural nets (Montanari and

Ranalli, 2005), generalized additive models (Opsomer et al., 2007), nonparametric additive

models (Wang and Wang, 2011), regression trees (Toth and Eltinge, 2011; McConville and

Toth, 2019) and random forests (Dagdoug et al., 2020).

Due to the recent advances of information technology, NSOs have now access to a variety

of data sources, some of which may exhibit a large number of observations on a large number

of variables. So far, the properties of model-assisted estimator have been established under

the customary asymptotic framework in �nite population sampling (Isaki and Fuller, 1982)

for which both the population sizeN and the sample size n increase to in�nity, while assuming

that the number of auxiliary variables p is �xed. In other words, existing results require n
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to be large relative to p. This framework is generally not adequate in the context of high-

dimensional data sets as p may be of the same order as n, or even larger, i.e., p > n. A

more appropriate asymptotic framework would let p increase to in�nity in addition to N and

n. Cardot et al. (2017) studied dimension reduction through principal component analysis

and established the design consistency of the resulting calibration estimator. More recently,

Ta et al. (2020) investigated the properties of the GREG estimator from a model point of

view and when p is allowed to diverge and Chauvet and Goga (2021) studied the asymptotic

variance of the calibration estimator when the number p of calibration variables is going to

in�nity.

The aim of this paper is to give a general consistency result for a class of model-assisted

estimators when the number p of auxiliary variables is allowed to grow to in�nity. This

class of model-assisted estimators includes the GREG estimator as well as model-assisted

estimators based on penalization methods such as ridge, lasso and elastic net. The latter

methods were proposed to cope with multicolinearity between predictors in a high-dimension

setting. Under mild regularity assumptions, we show that these model-assisted estimators are

design-consistent provided that p3/n goes to zero. As we argue in Section 3, this rate can be

improved if one is willing to make additional assumptions about the rate of convergence of the

estimated regression coe�cient. In particular, we lay out a set of additional conditions under

which the model-assisted ridge estimator is consistent if p/n goes to zero and moreover, is
√
n-

consistent if p = O(na) with a ∈ [0, 1/2). Also, provided that the predictors are orthogonal,

we show that both the model-assisted lasso and elastic net estimators are consistent provided

that p/n goes to zero.

To the best of our knowledge, an empirical comparison of penalized or nonparametric

model-assisted estimators in terms of bias and e�ciency in a high-dimensional setting is

currently lacking. We aim to �ll this gap in the article. To assess the performance of several

model-assisted estimators in a high-dimensional setting, we conduct a large simulation study

using data from the Irish Commission for Energy Regulation Smart Metering Project. The

data set consists of electricity consumption recorded every half an hour for a two-year period

and for more than 6000 households and businesses, leading to highly correlated data. Due

to the high-dimensional feature, model-assisted estimators based on a linear model tend

to breakdown and penalized and reduction dimension based estimators may provide good
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alternatives.

The paper is organized as follows. In Section 2, we introduce the theoretical setup. In

Section 3, we investigate the asymptotic properties of several model-assisted estimators: the

GREG estimator as well as estimators based on ridge regression, lasso and elastic net. Sec-

tion 4 contains an empirical comparison to assess the performance of several model-assisted

estimators in terms of bias and e�ciency. In our empirical experiments, we included model-

assisted estimators based on ridge regression, lasso and elastic net, principal component

regression as well as model-assisted estimators based on CART, random forests, XGBoost

and CUBIST. We considered three sampling designs: simple random sampling without re-

placement, strati�ed simple random sampling without replacement and strati�ed �xed-size

without replacement proportional to size sampling. We make some �nal remarks in Section 5.

The technical details, including the proofs of some results, are relegated to the Supplementary

Material.

2 The setup

Consider a �nite population U = {1, 2, ..., N} of size N . We are interested in estimating

ty =
∑

i∈U yi, the population total of the survey variable Y . We select a sample S from U

according to a sampling design P(S) with �rst-order and second-order inclusion probabilities

{πi}i∈U and {πi`}i,`∈U , respectively. In the absence of nonsampling errors, the Horvitz-

Thompson estimator

t̂π =
∑
i∈S

yi
πi

(1)

is design-unbiased for ty provided that πi > 0 for all i ∈ U ; that is, Ep(t̂π) = ty, where Ep(·)

denotes the expectation operator with respect to the sampling design P(S). In the sequel,

unless stated otherwise, the properties of estimators are evaluated with respect to the design-

based approach. Under mild conditions (Robinson and Särndal, 1983; Breidt and Opsomer,

2000), it can be shown that the Horvitz-Thompson estimator t̂π is design-consistent for ty.

At the estimation stage, we assume that a collection of auxiliary variables, X1, X2, . . . , Xp,

is recorded for all i ∈ S. Moreover, we assume that the corresponding population totals

are available from an external source (e.g., a census or an administrative �le). Let xi =

[xi1,xi2, . . . ,xip]
> be the x-vector associated with unit i. Also, we denote by XU = (x>i )i∈U
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the N × p design matrix and XS = (x>i )i∈S its sample counterpart.

Model-assisted estimation starts with postulating the following working model:

ξ : yi = f(xi) + εi, i ∈ U, (2)

where f(·) is an unknown function and the errors εi are independent random variables such

that Eξ [εi|xi] = 0 and Vξ (εi|xi) = σ2, where σ2 is an unknown parameter. Although we

assume an homoscedastic variance structure, our results can be easily extended to the case

of unequal variances of the form Vξ (εi|xi) = σ2ν(xi) for some known function ν(·).

The unknown function f(·) is estimated by f̂(·) from the sample data (xi, yi)i∈S . The

�tted model is then used to construct the model-assisted estimator

t̂ma =
∑
i∈U

f̂(xi) +
∑
i∈S

yi − f̂(xi)
πi

, (3)

where f̂(x) denotes the prediction at x under the working model (2). Whenever the pre-

dictor f̂(·) is sample dependent, the estimator t̂ma is design-biased, but can be shown to be

asymptotically design-unbiased and design-consistent for a wide class of working models, as

the population size N and the sample size n increase.

3 Least squares and penalized model-assisted estimators

3.1 The GREG estimator

Suppose that the regression function f(·) is approximated by a linear combination of Xj , j =

1, . . . , p. The working model (2) reduces to

ξ : yi = x>i β + εi, i ∈ U, (4)

where β = [β1, . . . , βp]
> ∈ Rp is a vector of unknown coe�cients. Under a hypothetical

census, where we observe yi and xi for all i ∈ U, the vector β would be estimated by β̃

through the ordinary least square criterion at the population level:

β̃ = argmin
β∈Rp

||yU −XUβ||22 = argmin
β∈Rp

∑
i∈U

(yi − x>i β)
2, (5)
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where yU = (yi)i∈U . Provided that the matrixXU is of full rank, the solution to (5) is unique

and given by

β̃ =
(
X>UXU

)−1
X>UyU =

(∑
i∈U

xix
>
i

)−1∑
i∈U

xiyi. (6)

In practice, the vector β̃ in (6) cannot be computed as the y-values are recorded for the

sample units only. An estimator of β̃, denoted by β̂, is obtained from (6) by estimating

each total separately using the corresponding Horvitz-Thompson estimator. Alternatively,

the estimator β̂ can be obtained using the following weighted least square criterion at the

sample level:

β̂ = argmin
β∈Rp

(yS −XSβ)
>Π−1

S (yS −XSβ)
> = argmin

β∈Rp

∑
i∈S

(yi − x>i β)
2

πi
, (7)

where ΠS = diag (πi)i∈S and yS = (yi)i∈S . Again, the solution to (7) is unique provided

that XS is of full rank and it is given by

β̂ =
(
X>SΠ−1

S XS

)−1
X>SΠ−1

S yS =

(∑
i∈S

xix
>
i

πi

)−1∑
i∈S

xiyi
πi

. (8)

The prediction of f(·) at x under the working model (4) is f̂lr(x) = x>β̂. Plugging f̂lr(·) in

(3) leads to the well-known GREG estimator (Särndal et al., 1992):

t̂greg =
∑
i∈U

f̂lr(xi) +
∑
i∈S

yi − f̂lr(xi)

πi

=
∑
i∈U

x>i β̂ +
∑
i∈S

yi − x>i β̂

πi
. (9)

If the intercept is included in the working model, the GREG estimator reduces to the pop-

ulation total of the �tted values f̂lr(xi) = x>i β̂; that is, t̂greg =
∑

i∈U x>i β̂. Also, the GREG

estimator can be written as a weighted sum of the sample y-values:

t̂greg =
∑
i∈S

wiSyi, (10)

where

wiS =
1

πi

1− x>i

(∑
i∈S

xix
>
i

πi

)−1(∑
i∈S

xi
πi
−
∑
i∈U

xi

) , i ∈ S.
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These weights can be also obtained as the solution of a calibration problem (Deville and

Särndal, 1992). More speci�cally, the weights wiS are such that the generalized chi-

square distance
∑

i∈S(wiS − π
−1
i )2/π−1

i is minimized subject to the calibration constraints∑
i∈S wiSxi =

∑
i∈U xi. This attractive feature may not be shared by model-assisted estima-

tors derived under more general working models.

3.2 Penalized least square estimators

While model-assisted estimators based on linear regression working models are easy to im-

plement, they tend to breakdown when the number of auxiliary variables p is growing large.

Also, when some of the predictors are highly related to each other, a problem known as

multicolinearity, the ordinary least square estimator β̃ given by (6) may be highly unstable.

As noted by Hoerl and Kennard (2000), �the worse the conditioning of X>UXU , the more

β̃ can be expected to be too long and the distance from β̃ to β will tend to be large�. In

survey sampling, the e�ect of multicolinearity on the stability of point estimators has �rst

been studied by Bardsley and Chambers (1984) under the model-based approach. Chambers

(1996) and Rao and Singh (1997) studied this problem in the context of calibration. These

authors noted that the use of a large number of calibration constraints may lead to highly

dispersed calibration weights, potentially resulting in unstable estimators.

In a classical iid linear regression setting, penalization procedures such as ridge, lasso or

elastic-net can be used to help circumvent some of the di�culties associated with the usual

least squares estimator β̃. Let β̃pen be an estimator of β obtained through the penalized

least square criterion at the population level:

β̃pen = argmin
β∈Rp

∑
i∈U

(
yi − x>i β

)2
+

t∑
`=1

λ`||β||γ`ν` , (11)

where λ`, ν` and γ` are positive real numbers, || · ||ν is a given norm and t is a �xed positive

integer representing the number of di�erent norm constraints. The values of ν`, γ` and t are

typically predetermined. The tuning parameter λ` controls the strength of the penalty that

one wants to impose on the norm of β. Most often, the value of λ` is selected through a

cross-validation procedure. The coe�cients γ` and ν` are speci�c to the penalization method.

Hence, they a�ect the properties of the resulting estimator β̃pen. Three special cases are
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considered below.

When t = 1, γ1 = 2 and ν1 = 2, λ1 = λ, the estimator is known as the ridge regression

estimator (Hoerl and Kennard, 1970):

β̃ridge = argmin
β∈Rp

∑
i∈U

(
yi − x>i β

)2
+ λ||β||22,

where ||β||22 =
∑p

j=1 β
2
j is the usual Euclidean norm of β. The solution is given explicitly by

β̃ridge =
(
X>UXU + λIp

)−1
X>UyU =

(∑
i∈U

xix
>
i + λIp

)−1∑
i∈U

xiyi, (12)

where Ip denotes the p× p identity matrix.

When t = 1, ν1 = 1 and λ1 = λ, the estimator β̃pen is known as the lasso estimator

(Tibshirani, 1996):

β̃lasso = argmin
β∈Rp

∑
i∈U

(
yi − x>i β

)2
+ λ||β||1, (13)

where ||β||1 =
∑p

j=1 |βj | is the L1-norm of β. As for the ridge, the lasso has the e�ect

of shrinking the coe�cients but, unlike the ridge, it can set some coe�cients βj to zero.

Except when the auxiliary variables are orthogonal, there is no closed-form formula for the

lasso estimator β̃lasso (Hastie et al., 2011). In survey sampling, McConville et al. (2017)

investigated the design-based properties of the lasso model-assisted estimator for �xed p.

The elastic-net estimator, that was suggested by Zou and Hastie (2005), combines two

norms: the euclidean norm || · ||2 and the L1 norm, || · ||1. If, in (11), we set t = 2, γ1 = 1,

ν1 = 1, γ2 = 2, ν2 = 2, λ1 = λα and λ1 = λ(1 − α), the resulting estimator is the elastic-

net estimator, which can be viewed as a trade-o� between the ridge estimator and the lasso

estimator, realizing variable selection and regularization simultaneously:

β̃en = argmin
β∈Rp

∑
i∈U

(
yi − x>i β

)2
+ λ

[
α||β||1 + (1− α)||β||22

]
,

for λ > 0 and α ∈ [0, 1] a parameter that is usually chosen using a grid of multiple values

of α. The penalized regression estimator β̃pen in (11) is unknown as the y-values are not

observed for the non-sample units. To overcome this issue, we use the following weighted
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penalized least square criterion at the sample level:

β̂pen = argmin
β∈Rp

∑
i∈S

1

πi

(
yi − x>i β

)2
+

t∑
`=1

λ`||β||γ`ν` . (14)

A model-assisted estimator based on a penalized regression procedure is obtained from

(3) by replacing f̂(x) with f̂pen(x) = x>β̂pen, leading to

t̂pen =
∑
i∈U

f̂pen(xi) +
∑
i∈S

yi − f̂pen(xi)

πi

=

(∑
i∈U

x>i

)
β̂pen +

∑
i∈S

yi − x>i β̂pen

πi
, (15)

where β̂pen is a generic notation used to denote the estimated regression coe�cient obtained

through either lasso, ridge or elastic net. Unlike the GREG estimator, t̂greg, the penalized

model-assisted estimator is sensitive to unit change of the X-variables because β̂pen is sen-

sitive to unit change. This is why, as in the classical regression setting, standardization of

the X-variables is recommended before computing β̂pen. If the intercept is included in the

model, then it is usually left un-penalized.

Remark 3.1. In the case of ridge regression, the estimator β̂ridge is given by

β̂ridge =
(
X>SΠ−1

S XS + λIp

)−1
X>SΠ−1

S yS =

(∑
i∈S

xix
>
i

πi
+ λIp

)−1∑
i∈S

xiyi
πi

. (16)

Using (16) in (15) leads to the ridge model-assisted estimator t̂ridge that can be expressed as

a weighted sum of sampled y-values, t̂ridge =
∑

i∈S wiS(λ)yi with weights given by

wiS(λ) =
1

πi

1− x>i

(∑
i∈S

xix
>
i

πi
+ λIp

)−1(∑
i∈S

xi
πi
−
∑
i∈U

xi

) , i ∈ S.

These weights can also be obtained through a penalized calibration problem. It can be shown

that they minimize the penalized generalized chi-square distance,
∑

i∈S(wiS − π
−1
i )2/π−1

i +

λ−1||
∑

i∈S wiSxi −
∑

i∈U xi||22 (Chambers, 1996; Beaumont and Bocci, 2008). If some X-

variables are left un-penalized in (11), the resulting weights ensure consistency between the

survey estimates and their corresponding population totals associated with these variables.
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We end this section by noting that the penalized model-assisted estimator t̂pen is sensitive

to the choice of the penalty parameter λ`. In the case of ridge regression, Bardsley and Cham-

bers (1984) suggested the ridge trace method for selecting the penalty parameter λ. This

method consists of plotting the weights wiS(λ), i ∈ S for values of λ from a pre-determined

grid values and to choose the value of λ for which the weights wiS(λ) are positive for all i ∈ S

and
∑

i∈S wiS(λ)xi −
∑

i∈U xi is the smallest di�erence among all the di�erences considered

for the grid values of λ. Using the fact that the modi�ed penalty λ∗ = λ/(1+λ) lies between

0 and 1 and is an increasing function of λ, Beaumont and Bocci (2008) proposed a method

based on the bisection algorithm to �rst determine λ∗ and then, λ. Guggemos and Tillé (2010)

implemented a Fisher scoring algorithm in order to �nd the value of λ which maximizes a

design-based estimated log-likelihood criterion. In case of the lasso model-assisted estimator,

McConville et al. (2017) used a cross-validation procedure to choose the best value of λ.

More research is needed to suggest a uni�ed criterion in order to �nd the best penalty in

a sample-based framework. This is beyond the scope of the article. Most of the computer

software use a cross-validation criterion to choose the best penalty parameter.

3.3 Consistency of the GREG and penalized GREG estimators in a high-

dimensional setting

We adopt the asymptotic framework of Isaki and Fuller (1982) and consider an increasing

sequence of embedded �nite populations {Uv}v∈N of size {Nv}v∈N. In each �nite population

Uv, a sample, of size nv, is selected according to a sampling design Pv(Sv) with �rst-order

inclusion probabilities πi,v and second-order inclusion probabilities πi`,v. While the �nite

populations are considered to be embedded, we do not require this property to hold for the

samples {Sv}v∈N. This asymptotic framework assumes that v goes to in�nity, so that both

the �nite population sizes {Nv}v∈N, the samples sizes {nv}v∈N and the number of auxiliary

variables {pv}v∈N go to in�nity. To improve readability, we shall use the subscript v only in

the quantities Uv, Nv, nv and pv; for instance, quantities such as πi,v shall be simply denoted

by πi.

The following assumptions are required to establish the consistency of the GREG and

penalized GREG estimators in a high-dimensional setting.

(H1) We assume that there exists a positive constant C1 such that N−1
v

∑
i∈Uv

y2
i < C1.
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(H2) We assume that lim
v→∞

nv
Nv

= π ∈ (0, 1).

(H3) There exist a positive constant c such that min
i∈Uv

πi > c > 0; also, we assume that

lim sup
v→∞

nv max
i 6=`∈Uv

|πi` − πiπ`| <∞.

(H4) We assume that there exists a positive constant C2 such that, for all i ∈ Uv, ||xi||22 ≤

C2pv, where || · ||2 denotes the usual Euclidean norm.

(H5) We assume that ||β̂||1 = Op(pv), where β̂ is the least square estimator given in (8)

and || · ||1 denotes the L1 norm.

The assumptions (H1), (H2) and (H3) were used by Breidt and Opsomer (2000) in a

nonparametric setting and similar assumptions were used by Robinson and Särndal (1983)

to establish the consistency of the GREG estimator in a �xed dimensional setting. These

assumptions hold for many usual sampling designs such as simple random sampling without

replacement, strati�ed designs (Breidt and Opsomer, 2000), or high-entropy sampling designs.

Assumptions (H4) and (H5) can be viewed, respectively, as extensions of Assumption A.1 and

Assumption A.3 in Robinson and Särndal (1983) to pv-dimensional vectors with pv growing

to in�nity. Assumption (H5) is not very restrictive in this high-dimensional setting as it

requires that components of β̂ are all bounded. When pv is �xed, then our assumptions

essentially reduce to those of Robinson and Särndal (1983).

Result 3.1. Assume (H1)-(H5). Consider a sequence of GREG estimators {t̂greg}v∈N of ty.

Then,

1

Nv
(t̂greg − ty) = Op

(√
p3
v

nv

)
.

If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy p3
v/nv =

o(1), then N−1
v (t̂greg − ty) = op(1).

The
√
n-consistency obtained by Robinson and Särndal (1983) is a special case of Result

3.1 with pv = O(1). Result 3.1 highlights the fact that the rate of convergence decreases as

the number of auxiliary variables pv increases. Yet, this result guarantees the existence of a

consistent GREG estimator, even when the number of auxiliary variables is allowed to diverge.

An improved consistency rate for t̂greg may be obtained if, in (H5), the usual euclidean norm
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is used instead of L1-norm. Establishing the rate of convergence of the sampling error β̂− β̃

may also be utilized to obtain a lower consistency rate for t̂greg; e.g., see Chauvet and Goga

(2021) .

The next result establishes the design-consistency of model-assisted penalized regression

estimators. The proof is similar to that of Result 3.1 and is given in the Supplementary

Material.

Result 3.2. Assume (H1)-(H5). Consider a sequence of penalized model-assisted estimators

{t̂pen}v∈N of ty obtained by either ridge, lasso or elastic-net. Then,

1

Nv
(t̂pen − ty) = Op

(√
p3
v

nv

)
.

If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy p3
v/nv =

o(1), then N−1
v (t̂pen − ty) = op(1).

The above result makes no use of the asymptotic convergence rate of β̂pen which depends

on the penalization method. For example, if one can establish that ||β̂pen||1 = Op(γv),

then N−1
v (t̂pen − ty) = Op(γv

√
pv/nv). Alternatively, improved consistency rates of t̂pen

may be obtained if one can establish the magnitude of the sampling error β̂pen − β̃pen in a

high-dimension setting. In other words, obtaining these improved rates requires additional

assumptions, unlike Result 3.2 which is obtained under relatively mild assumptions.

Next, we show that, under additional assumptions on the auxiliary variables, the model-

assisted ridge estimator is L1 design-consistent for ty if pv/n goes to zero and that it has the

usual
√
n-consistency rate if pv = O(nav) with 0 ≤ a < 1/2, which constitutes a signi�cant

improvement over Result 3.2.

Result 3.3. Assume (H1)-(H4). Also, assume that there exists a positive constant C̃ such

that λmax(X
>
UvXUv) 6 C̃Nv, where λmax(X

>
UvXUv) is the largest eigenvalue of X>UvXUv .

Assume also that Nv/λv = O(1).

1. Then, there exists a positive constant C such that Ep
[
||β̂ridge||22

]
6 C and

1

Nv
Ep
∣∣∣∣t̂ridge − ty

∣∣∣∣ = O(√ pv
nv

)
.
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If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy

pv/nv = o(1), then N−1
v Ep|t̂ridge − ty| = o(1).

2. Ep(||β̂ridge−β̃ridge||22) = O(pv/nv). Thus, if pv/nv = o(1), then Ep(||β̂ridge−β̃ridge||22) =

o(1).

3. We have the following asymptotic equivalence:

1

Nv

(
t̂ridge − ty

)
=

1

Nv

(
t̂diff,λ − ty

)
+Op

(
pv
nv

)
,

where

t̂diff,λ =
∑
i∈Sv

yi/πi −

(∑
i∈Sv

xi/πi −
∑
i∈Uv

xi

)>
β̃ridge

and

1

Nv
Ep
∣∣∣∣t̂ridge − ty

∣∣∣∣ = O( 1
√
nv

)
+O

(
pv
nv

)
.

If pv = O(nav) with 0 ≤ a < 1/2, then

1

Nv

(
t̂ridge − ty

)
=

1

Nv

(
t̂diff,λ − ty

)
+ op (1)

and

1

Nv
Ep
∣∣∣∣t̂ridge − ty

∣∣∣∣ = O( 1
√
nv

)
.

It follows from Result 3.3 that, for pv = O(nav) with 0 ≤ a < 1/2, the asymptotic

variance of the model-assisted ridge estimator t̂ridge is equal to the variance of the generalized

di�erence estimator t̂diff,λ. For a = 1/2, we note that the model-assisted estimator is still
√
n-

design consistent but the remainder term is no longer negligible with respect to t̂diff,λ and the

variability of this term should be consider to compute the asymptotic variance of t̂ridge. The

case of model-assisted estimators based on lasso and elastic-net is more intricate. This is due

to the fact that both estimators involve the L1-norm. As a result, a closed-form expression

of these estimators cannot be obtained. However, if the predictors are orthogonal, a closed-

form expression exists for the lasso and elastic-net estimators and improved consistency rates

can be obtained; see Proposition 3.1 below. The case of non-orthogonal predictors is more

13



challenging and is beyond the scope of this article.

Proposition 3.1. Suppose assumptions (H1)-(H3) and that the sampling design and the X-

variables are such that the columns of Π
−1/2
Sv

XSv are orthogonal. Suppose also that there

exist positive quantities C3 and C4 such that maxj=1,...,pvN
−1
v

∑
i∈Uv x

4
ij ≤ C3 < ∞ and

minj=1,...,pvN
−1
v

∑
i∈Uv x

2
ij ≥ C4 > 0. Then, N−1

v (t̂greg − ty) = Op(
√
pv/nv) and N

−1
v (t̂pen −

ty) = Op(
√
pv/nv), where t̂pen denotes either the lasso or the elastic-net estimator.

4 Simulation study

In this section, we provide an empirical comparison of several model-assisted estimators. In

addition to the estimators discussed in Section 3. In addition, we considered model-assisted

estimators based on principal component regression (Cardot et al., 2017), regression trees

(Breiman, 1984), random forests (Breiman, 2001), k-nearest neighbors, XGBoost (Chen and

Guestrin, 2016) and Cubist (Quinlan et al., 1992). For a description of these methods, see

Hastie et al. (2011) and Dagdoug et al. (2021) and the references therein.

We used data from the Irish Commission for Energy Regulation (CER) Smart Metering

Project that was conducted in 2009-2010 (CER, 2011)1 (Cardot et al., 2017). This project

focused on energy consumption and energy regulation. About 6000 smart meters were in-

stalled to collect the electricity consumption of Irish residential and business customers every

half an hour over a period of about two years.

We considered a period of 14 consecutive days and a population of N = 6, 291 smart

meters (households and companies). Each day consisted of 48 measurements, leading to 672

measurements for each household. We denote by Xj = X(tj), j = 1, . . . , 672, the electricity

consumption (in kW) at instant tj and by xij the value of Xj recorded by the ith smart meter

for i = 1, . . . , 6, 291. It should be noted that the matrix N−1X>X was ill-conditioned with a

condition number equal to 254 753. This suggests that some of the X-variables were highly

correlated with each other.

We generated four survey variables based on these auxiliary variables according to the

following models:

Y1 = 400 + 2X1 +X2 + 2X3 +N (0, 1500);

1The data are available on request at: https://www.ucd.ie/issda/data/commissionforenergyregulationcer/.
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Y2 = 500 + 2X4 + 4001 (X5 > 156)− 4001 (X5 6 156) + 10001 (X2 > 190)

+ 3001 (X5 > 200) +N (0, 1500);

Y3 = 1 + cos(2X1 +X2 + 2X3)
2 + ε1;

Y4 = 4 + 3 · V
(
{X1 +X2}2

)−1/2
× {X1 +X2}2 +N (0, 0.01),

where V(·) denotes the empirical variance and the errors ε1 in the model for Y3 were generated

from an Exp(10) and these errors were centered so as to obtain a mean equal to zero.

Our goal was to estimate the population totals tyj =
∑

i∈U yij , j = 1, . . . , 4. From the

population, we selected R = 2, 500 samples, of size n = 600, which corresponds to a sampling

fraction n/N of about 10%. We considered three sampling schemes: simple random sampling

without replacement, strati�ed simple random sampling without replacement with optimal

allocation and strati�ed without replacement proportional to size sampling with proportional

allocation.

In each sample, we computed twelve model-assisted estimators of the form

t̂(j)ma =
∑
i∈U

f̂ (j)(xi) +
∑
i∈S

yi − f̂ (j)(xi)

πi
, j = 1, 2, . . . , 12,

where the predictors f̂ (j)(xi), j = 1, 2, . . . , 12, were obtained using the following procedures:

Procedure 1: "LR" : Deterministic linear regression, leading to the GREG estimator.

Procedure 2: "CART": Classi�cation and regression tree algorithm (Breiman, 1984), leading

to an estimator closely related to that of McConville and Toth (2019) and

implemented with the R-package rpart.

Procedure 3: "RF": Random forests with the algorithm of Breiman (2001) with B = 1000

trees, a minimal number of elements in each terminal node n0 = 5 and p0 =

b√pc variables selected randomly at each split, where b·c denotes the customary

�oor function. The algorithm leads to the estimator described in Dagdoug et al.

(2020). Simulations were implemented with the R-package ranger.

Procedure 4: "Ridge": Ridge regression with a regularization parameter determined by cross-

validation and implemented with the R-package glmnet. The estimator was

studied by Goga and Shehzad (2010).
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Procedure 5: "Lasso": Lasso regression with a regularization parameter determined by cross-

validation and implemented with the R-package glmnet (McConville et al.,

2017).

Procedure 6: "EN": Elastic net regression with penalization coe�cients determined by cross-

validation with the R-package glmnet.

Procedure 7: "XGB": XGBoost algorithm (Hastie et al., 2011) with 50 trees in the additive

model, each tree being with a depth of at most 6 and a learning rate λ = 0.01.

Simulations were implemented with the R-package XGBoost.

Procedure 8: "5NN": 5-nearest neighbors predictor with the euclidean distance and imple-

mented with the R-package caret.

Procedure 9: "Cubist": A cubist algorithm (Kuhn and Johnson, 2013) with 5 models in

each predictor, implemented with the R-package cubist; the algorithm and its

adaptation for survey data are described in Dagdoug et al. (2021).

Procedure 10: "PCR1": Principal component regression based on the �rst bp1/4c components

kept and implemented with the R-package pls (Cardot et al., 2017).

Procedure 11: "PCR2": Principal component regression based on the �rst bp2/4c components

kept.

Procedure 12: "PCR3": Principal component regression based on the �rst bp3/4c components

kept.

As a measure of bias of the model-assisted estimators t̂
(j)
ma, j = 1, 2, ..., 12, we computed

the Monte Carlo percent relative bias de�ned as

RBMC

(
t̂(j)ma

)
= 100× 1

R

R∑
r=1

(t̂
(j,r)
ma − ty)
ty

, j = 1, 2, . . . , 12,

where t̂
(j,r)
ma denotes the estimator t̂

(j)
ma at the rth iteration, r = 1, . . . , R. As a measure of

e�ciency, we computed the relative of e�ciency, using the Horvitz-Thompson estimator t̂π

given by (1), as the reference. That is,

REMC

(
t̂(j)ma

)
= 100× MSEMC(t̂

(j)
ma)

MSEMC(t̂π)
, j = 1, 2, ..., 12,
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where MSEMC(t̂
(j)
ma) = R−1

∑R
r=1(t̂

(j,r)
ma − ty)2 and MSEMC(t̂π) is de�ned similarly.

We were also interested in investigating to which extent the model-assisted estimators

t̂
(j)
ma, j = 1, . . . , 12 were a�ected by the inclusion of a large number of predictors in the

working models. To that end, in addition to the variables X1, . . . , X5, we included dnoise

predictors in the working models. These predictors were available in the Irish data set. We

used the following values for dnoise: 5, 10, 20, 50, 100, 200, 300 and 400.

4.1 Simple random sampling without replacement

In this section, we present the results obtained under simple random sampling without re-

placement (SRSWOR) of size n = 600. All the point estimators t̂
(j)
ma, j = 1, . . . , 12, exhibited

a negligible or small percent RB with a maximum value of about 3.1% (obtained in the case

of the GREG estimator). For this reason, results pertaining to relative bias are not reported

here.

Figures 1-4 display the relative e�ciency of the model-assisted estimators t̂
(j)
ma, j =

1, . . . , 12 as a function of the number of auxiliary variables incorporated in the working

models. To improve readability, we have truncated some large values of RE, when applica-

ble.

We begin by discussing the results on relative e�ciency pertaining to the estimation of

the total of the survey variable Y1. For low-dimensional settings, the GREG estimator was

very e�cient with values of RE below 10%. These results can be explained by the fact

that Y1 was linearly related to the x-variables. However, as the number of variables dnoise

increased, the e�ciency of the GREG estimator rapidly deteriorated, suggesting that the per-

formance of the GREG estimator is sensitive to the dimension of the x-vector. As expected,

model-assisted estimators based on regularization methods such as ridge, lasso, elastic-net or

dimension reduction methods such as principal components regression, performed generally

very well. Unlike the GREG, these estimators were not much a�ected by the number of

auxiliary variables incorporated in the model. Turning to the model-assisted estimator based

on a 5-nn, we note that it was less e�cient than most competitors and that its e�ciency

got worse as dnoise increased, a phenomenon referred to as the curse of dimensionality. The

model-estimators based on XGBoost, Cubist and random forests performed quite well and

did not seem to be a�ected by the number of auxiliary variables incorporated in the model.
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Finally, the estimators based on CART were less e�cient than those obtained through the

other machine learning methods.

The results pertaining to the survey variable Y2 and displayed in Figure 2 were fairly

consistent with those obtained for the survey variable Y1 with one exception: the Cubist

algorithm was signi�cantly more e�cient than the other procedures in all the scenarios.

Turning to the survey variable Y3 (see Figure 3), the model-assisted estimator based on

random forests was signi�cantly more e�cient than the Horvitz�Thompson estimator, espe-

cially for large values of dnoise. The other procedures led to estimators less e�cient than

the Horvitz-Thompson estimator with values of RE above 100. In particular, the GREG

estimator broke down as the number of auxiliary variable increased. The performance of

model-assisted estimators based on CART and XGBoost algorithms deteriorated as the di-

mension increased. In a high-dimension setting with highly correlated predictors, random

forests improved over CART due to the random subsampling of p0 variables among the p

variables, generating then decorrelated trees (Hastie et al., 2011).

The results in Figure 4 about the survey variable Y4 were similar to the ones in previous

�gures. Most estimators remained mostly una�ected by the number of auxiliary variables

dnoise. Again, the model-assisted estimator based on the Cubist algorithm was the best in

all the scenarios.

4.2 Strati�ed simple random sampling with optimal allocation

In the second simulation study, we partitioned the Irish residential and business customer

population into four strata U1, . . . , U4, using an equal quantile method with respect to the

variable, X1, the electricity consumption at instant t1. From the population, we selected R =

2, 500 strati�ed simple random samples, of size n = 600. The stratum sample sizes nh were

determined using an X2-optimal allocation, where X2 denotes the electricity consumption

recorded at instant t2. This led to n1 = 20, n2 = 36, n3 = 45 and n4 = 499. The �rst-order

inclusion probabilities, πi = nh/Nh, i ∈ Uh and the sampling weights wi = π−1
i are shown in

Table 1.

We con�ned to the survey variables Y1 and Y3 only and we aimed at estimating ty1 and ty3 .

It is worth pointing out that the resulting sampling design was informative as the variables

used at the design stage (X1 and X2) were also related to the survey variables Y1 and Y3.
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Figure 1: Relative e�ciency of model-assisted estimators t̂
(j)
ma, j = 1, . . . , 12 for the estimation

of the total of Y1 with SRSWOR (n = 600) and increasing number of auxiliary variables

Figure 2: Relative e�ciency of model-assisted estimators t̂
(j)
ma, j = 1, . . . , 12 for the estimation

of the total of Y2 with SRSWOR, n = 600 and increasing number of auxiliary variables

In fact, the Monte Carlo coe�cient of correlation between the sampling weights and Y1 was

approximately equal to 0.402. We do not report the coe�cient of correlation between the

sampling weights and Y3 as the relationship between Y3 and the set of predictors X1, X3 is
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Figure 3: Relative e�ciency of model-assisted estimators t̂
(j)
ma, j = 1, . . . , 12 for the estimation

of the total of Y3 with SRSWOR, n = 600 and increasing number of auxiliary variables

Figure 4: Relative e�ciency of model-assisted estimators t̂
(j)
ma, j = 1, . . . , 12 for the estimation

of the total of Y4 with SRSWOR, n = 600 and increasing number of auxiliary variables

not linear.

Again, in each sample we computed twelve model-assisted estimators t̂
(j)
ma, j = 1, . . . , 12 for

each of ty1 and ty3 . Since most machine learning software packages do not take the sampling
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Stratum 1 2 3 4

πi 0.012 0.022 0.028 0.316

wi = π−1
i 77.85 43.83 35.11 3.16

Table 1: First-order inclusion probabilities and sampling weights within strata.

weights into account, we have included the design variablesX1 andX2 in the set of predictors.

We begin by discussing the results pertaining to the estimation of the total of the survey

variable Y1. Figure 5 and Figure 6 display the Monte Carlo percent relative bias and the

Monte Carlo relative e�ciency as a function of the number of variables dnoise. Except for the

model-assisted estimators based on 5-nn and random forest, the other estimators exhibit a

small value of RB for all values of dnoise. Again, the 5-nn model-assisted estimator su�ered

from the curse of dimensionality. Turning to the estimator based on random forests, we

note from Figure 5 that the bias increased as the number of predictors dnoise increased. For

instance, for dnoise = 400, the value of RB was just above 10%. This signi�cant bias may be

explained by the fact that random forests is the only procedure among the ones considered

in our simulation that randomly selects p0 =
√
p variables among the initial p predictors at

each split. For instance, for dnoise = 400, only 20 variables are randomly selected at each

split. As a result, most predictions obtained through a random forests algorithm were based

on misspeci�ed working models, leading to potentially bad �ts and large residuals. Also,

each prediction corresponds to a weighted mean computed within each node with n0 = 5

observations only. Therefore, each predictions corresponds to a ratio-type estimate based

on 5 observations only. This, together with the fact that the sampling weights are highly

variable, constitutes a conducive ground for the occurrence of small sample bias. In terms

of e�ciency, except for the GREG, the 5-nn and the random forest estimators, the other

procedures performed well with values of RE ranging from 60% to 80%. The best procedures

were Cubist and Lasso.

We now turn to the survey variable Y3. First, the Monte Carlo relative bias was negligible

for all the estimation procedures and are not reported here. Results about relative e�ciency

are plotted in Figure 7. Random forests performed extremely well and their performance

improved as dnoise increased. This suggests that the method was able to extract the infor-

mation contained in the predictors. This was also true for Cubist and XGBoost, although to

a lesser extent.
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Figure 5: Relative bias of model-assisted estimators t̂
(j)
ma, j = 1, . . . , 12 for the estimation of

the total of Y1 with strati�ed simple random sampling with X2-optimal allocation, n = 600
with increasing number of auxiliary variables

Figure 6: Relative e�ciency of model-assisted estimators t̂
(j)
ma, j = 1, . . . , 12 for the estimation

of the total of Y1 with strati�ed simple random sampling with X2-optimal allocation, n = 600
and increasing number of auxiliary variables

To get a better understanding of the performance of random forests for the estimation

of the total of the survey variable Y1, we conducted additional scenarios based on di�erent
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Figure 7: Relative e�ciency of model-assisted estimators t̂
(j)
ma, j = 1, . . . , 12 for the estimation

of the total of Y3 with strati�ed simple random sampling with X2-optimal allocation, n=600
and increasing number of auxiliary variables

values of the hyper parameters n0, the number of observations within each terminal nodes,

and p0, the number of variables randomly selected at each split among the initial p model

variables. We used the following values for n0 and p0:

� n0 = 5 observations and p0 =
√
p variables which are the default choices in the R-

package ranger;

� n0 = 5 observations and p0 = p variables;

� n0 = 5 observations and p0 =
√
p variables, with, in addition, the design variables X1,

X2, as well as the vector of inclusion probabilities and the vector of strata that were

selected with probability 1, at each split, besides the p0 variables;

� n0 = n13/20 observations and p0 =
√
p variables.

The Monte Carlo percent relative bias is displayed in Figure 8. We note that relative bias

was much smaller (always less than 1%) when the design variables were considered besides

p0 variables at each split. To a lesser extent, the bias decreased when more observations

were allowed in each terminal node. These results suggest, that, when the sampling design is
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informative, in order to avoid signi�cant small sample bias, we recommend to force the design

variables to be selected at each split. This option is available in the R package ranger.

Figure 8: Comparison of di�erent con�gurations of hyper-parameters for t̂rf for the estimation
of the total of Y1 with strati�ed simple random sampling and X2-optimal allocation, n = 600.

4.3 Strati�ed inclusion probability proportional-to-size sampling without

replacement

We consider the strati�ed population described in Section 4.2. In each stratum, we selected

units according to a �xed-size inclusion probability proportional-to-size sampling without

replacement using X2, the electricity consumption at instant t = 2, as the size variable.

In each stratum, we used the sample size nh were determined according to proportional

allocation; i.e., nh = n ·Nh/N . The �rst-order inclusion probabilities were then given by

πi =
nhxi2∑
j∈Uh xj2

, i ∈ Uh, and h = 1, 2, 3, 4.

As in Section 4.2, we focused on estimating ty1 and ty3 and we computed the same

twelve model-assisted estimators t̂
(j)
ma, j = 1, . . . , 12. The inclusion probabilities were highly

correlated with the survey variable Y1, with a correlation coe�cient of about 0.62; we do

not report the coe�cient of correlation in the case of Y3 as the underlying relationship was
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nonlinear. Based on �ndings from the Section 4.2, we adopted the following con�guration for

the random forest algorithm: we considered n0 = 5 observations in each terminal node and,

at each split, we randomly selected p0 =
√
p variables. Note that the design variables X1 and

X2 as well as the vector of inclusion probabilities and the vector of stratum indicators were

selected with probability 1 at each split in addition to the p0 variables.

All the estimators exhibited a negligible relative bias (less than 1%). Figure 9 and Figure

10 show the relative e�ciency corresponding to ty1 ty3, respectively.

Figure 9: Relative e�ciency of model-assisted estimators t̂
(j)
ma, j = 1, . . . , 12 for the estimation

of the total of Y1 with strati�ed without replacement X2-proportional to size sampling, n =
600 and increasing number of auxiliary variables

From Figure 9, we note that most estimators exhibited a behavior similar to that obtained

in the case the strati�ed simple random sampling based on an X2-optimal allocation (see

Section 4.2). However, we note that the estimators PCR1 and PCR2 did poorly unlike in

the case strati�ed simple random sampling based on an X2-optimal allocation. This poor

behaviour may be due to the fact that the sampling design was now much more informative

and keeping a few principal components only may have led to a loss of information. The

estimator PCR3 based on more principal components did better than PCR1 and PCR2. From

Figure 10, we note that the use of model-assisted estimators led to signi�cant improvement

over the Horvitz-Thompson estimator, with value of relative e�ciency ranging from 6% to
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Figure 10: Relative e�ciency of model-assisted estimators t̂
(j)
ma, j = 1, . . . , 12 for the estima-

tion of the total of Y3 with strati�ed without replacement X2-proportional to size sampling,
n = 600 and increasing number of auxiliary variables

22%.

4.4 Strati�ed simple random sampling with proportional allocation

In this section, we consider a more realistic scenario based again on the Irish residential and

business customer data. As a strati�cation variable, we used the mean electricity consumption

recorded during the �rst week. Again, we constructed four strata using an equal-quantile

method based, this time, on the mean electricity consumption; see also Cardot et al. (2013)

who used a similar design. The mean trajectories during the �rst week within each stratum

are plotted in Figure 11. From Figure 11, we note that Stratum 1 corresponds to consumers

with low global levels of electricity consumption, whereas Stratum 4 consists of consumers

who have high levels of electricity consumption.

Our aim was to estimate the total electricity consumption recorded on the Monday of the

second week and given by ty =
∑6291

i=1

∑384
j=336 yij , where yij is the electricity consumption

recorded for the i-th unit at the j-th instant. Within each stratum, we selected a sample, of

size nh, according to simple random sampling without replacement. The nh's were determined

according to proportional allocation; i.e, nh = n × (Nh/N) with n = 600. In each of the
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2,500 samples, we computed the same 12 model-assisted estimators as in the previous sections.

Again, we computed the Monte Carlo percent relative bias and the relative e�ciency for each

the 12 estimators. The results are presented in Table 2.

Figure 11: Average electricity consumption on each stratum during �rst week

Estimator Relative bias Relative e�ciency

LR 0.2 9.3
CART -0.1 41.0
RF -1.1 17.0

Ridge 0.1 4.0
Lasso 0.2 4.1
EN 0.2 4.1
XGB -1.7 24.9
NN5 -4.0 65.6
Cubist -0.0 4.3
PCR1 0.1 4.9
PCR2 0.1 4.2
PCR3 0.1 4.2

Table 2: Monte Carlo percent relative bias and relative e�ciency of several model-assisted
estimators under strati�ed simple random sampling with proportional allocation.

From Table 2, we note that the 5-nn model-assisted estimator was the only estimator

to exhibit a non-negligible bias. Although it was less e�cient than its competitors, it was

more e�cient than the Horvitz-Thompson estimator with a value of RE of about 65.6%.

The ridge estimator was the most e�cient with a value of RE equal to 4% and was closely

followed by lasso, elastic-net, Cubist and principal components model-assisted estimators.
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The GREG estimator performed very well with a value of RE of about 9.3%. Random

forests led to considerable improvement over the CART model-assisted estimator with values

of RE of 17% and 41%, respectively. Still, random forests were less e�cient than the GREG

estimator, which is not surprising as the relationship between the survey variable and the

auxiliary variables was linear.

5 Final remarks

In this paper, we have examined a number of model-assisted estimation procedures in a

high-dimensional setting both theoretically and empirically. If the relationship between the

survey variable and the auxiliary information can be well described by a linear model, our

results suggest that penalized estimators such as ridge, lasso and elastic net perform very

well in terms of bias and e�ciency, even in the case p = n. Model-assisted estimators based

on random forests, Cubist and XGBoost methods were mostly una�ected by the number

of predictors incorporated in the working model, even in the case of complex relationships

between the study and the auxiliary variables. As expected, the GREG estimator su�ered

from poor performances in the case of a large number of auxiliary variables.

The procedure Cubist stood out from the other machine learning procedure with very

good performances in virtually all the scenarios. Further work is needed to establish the

theoretical properties of model-assisted estimators based on Cubist in both a low-dimensional

and high-dimensional settings.

Variance estimation is an important stage of the estimation process. Further research

includes identifying the regularity conditions under which the variance estimators are design-

consistent in a high-dimensional setting.

We end this article by mentioning that virtually all the machine learning software packages

cannot handle design features such as unequal weights and strati�cation. For instance, some

random forests algorithms may involve a bootstrapping procedure and/or a cross-validation

procedure. To fully account for the sampling design, both procedures must be modi�ed so

as to account for the design features. One notable exception is the R package RPMS (Toth,

2021) that has the ability to incorporate sampling weights for CART and random forests. Not

fully accounting for the sampling design may be viewed as a form of model misspeci�cation.

However, model-assisted estimation procedures remain design-consistent even if the model is
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misspeci�ed. In our experiments, several machine learning procedures (e.g., random forests,

Cubist, XGboost) performed very well in most scenarios even though we did not modify

the bootstrapping and cross-validation procedures to account for design features. In other

words, it seems that, accounting for predictors that are highly predictive of the Y -variable,

seems to be the preponderant factor with respect to the e�ciency aspect of model-assisted

estimators. We conjecture that fully accounting for the sampling design will likely lead to

additional e�ciency gains but that the predictive power of the model likely constitutes the

"determining factor". Developing machine learning procedures that fully account for the

sampling design is currently under investigation.
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