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Abstract

Nonparametric and machine learning methods are �exible methods for obtaining ac-

curate predictions. Nowadays, data sets with a large number of predictors and complex

structures are fairly common. In the presence of item nonresponse, nonparametric and

machine learning procedures may thus provide a useful alternative to traditional impu-

tation procedures for deriving a set of imputed values used next for the estimation of

study parameters de�ned as solution of population estimating equation. In this paper,

we conduct an extensive empirical investigation that compares a number of imputation

procedures in terms of bias and e�ciency in a wide variety of settings, including high-

dimensional data sets. The results suggest that a number of machine learning procedures

perform very well in terms of bias and e�ciency.
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Ensemble Methods; Nearest Neighbour; Item nonresponse; Random forest; Support vector regression

(SVR); Survey data; Statistical learning; Tree boosting.

1 Introduction

In the last decade, the interest in machine learning methods has been growing in national sta-

tistical o�ces (NSO). These data-driven methods provide �exible tools for obtaining accurate
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predictions. The increasing availability of data sources (e.g., big data sources and satellite in-

formation) provides a rich pool of potential predictors that may be used to obtain predictions

at di�erent stages of a survey. These stages include the nonresponse treatment stage (e.g.,

propensity score weighting and imputation) and the estimation stage (e.g., model-assisted

estimation and small area estimation). The imputation stage is the focus of the current

paper.

Item nonresponse refers to the presence of missing values for some, but not all, survey

variables. Frequent causes of item nonresponse include refusal to answer a sensitive question

(e.g., income) and edit failures. The most common way of treating item nonresponse in

NSOs is to replace a missing value with a single imputed value, constructed on the basis

of a set of p explanatory variables, X = (X1, . . . , Xp), available for both respondents and

nonrespondents. A variety of imputation procedures are available, ranging from simple (e.g.,

mean, historical and ratio imputation) to more complex (e.g., nonparametric procedures);

e.g., see Chen and Haziza (2019) for an overview of imputation procedures in surveys. Every

imputation procedure makes some (implicit of explicit) assumptions about the distribution

of the variable Y requiring imputation. This set of assumptions is often referred to as an

imputation model. At the imputation stage, it is therefore important to identify and include

in the model all the appropriate explanatory variables that are predictive of the variable

requiring imputation and determine a suitable model describing the relationship between Y

and the set of explanatory variables X.

We distinguish parametric imputation procedures from nonparametric imputation proce-

dures. In parametric imputation, the shape of the relationship between Y and X is predeter-

mined; e.g., linear and generalized linear regression models. However, point estimators based

on parametric imputation procedures may su�er from bias if the functional form is misspec-

i�ed or if the vector X fails to include interactions or predictors accounting for curvature.

In contrast, with nonparametric methods, the shape of the relationship between Y and X is

left unspeci�ed. These methods have the ability to capture nonlinear trends in the data and

tend to be robust to the non-inclusion of interactions or predictors accounting for curvature.

Commonly used nonparametric methods include kernel smoothing, local polynomial re-

gression and spline-based regression models. While these methods provide some robustness

against model misspeci�cation, they tend to breakdown when the number predictors is large,
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a problem known as the curse of dimensionality. To mitigate this problem, one may employ

additive models (Hastie and Tibshirani, 1986). However, when the dimension of X is very

large, these models tend to fail and machine learning methods may provide an interesting

alternative. The class of machine learning methods, that includes tree-based models such

as random forests and boosting methods, provide more �exible approaches able to adapt

to complex non-linear and non-additive relationships between the survey variable requiring

imputation and a set of predictors. These methods may also prove useful in the case of large

data sets exhibiting a large number of observations on a large number of variables. Many

machine learning procedures are relatively computationally e�cient and can produce accu-

rate predictions by o�ering the user a kind of automatic variable selection that may prove

useful in a high-dimensional setting.

However, both a theoretical treatment and an empirical comparison of machine learning

imputation procedures in the context of missing survey data are currently lacking. In this

paper, we aim to �ll the latter gap by conducting an extensive simulation study that inves-

tigates the performance of several nonparametric and machine learning procedures in terms

of bias and e�ciency. To that end, we generated several �nite populations with relationships

between Y and X, ranging from simple to complex and generated the missing values accord-

ing to several nonresponse mechanisms. We also considered both a low-dimensional and high

dimensional settings. The simulation setup and the models are described in Section 4. We re-

stricted our attention to population totals (Section 4) and population quantiles (Section 5) as

the target parameters. The following procedures were included in our comparisons: the score

method (Little, 1986; Haziza and Beaumont, 2007), K nearest-neighbour (Chen and Shao,

2000), additive models based on B-spline regression, regression trees (Breiman et al., 1984),

random forests (Breiman, 2001), tree-based boosting methods (Friedman, 2001) including

XGBoost (Chen and Guestrin, 2016) and Bayesian additive regression trees (Chipman et al.,

2010), the cubist algorithm (Quinlan et al., 1992; Quinlan, 1993) and support vector regres-

sion (Vapnik, 1998, 2000). In Section 3, we describe these models and the corresponding

imputation procedures.

In recent years, machine learning procedures have received some attention in a survey

sampling context. In the ideal situation of 100% response, the theoretical properties of

model-assisted estimation procedures based on regression trees (McConville and Toth, 2019)
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and random forests (Dagdoug et al., 2020a) have been recently established. Dagdoug et al.

(2020b) studied the theoretical properties of point and variance estimators based on random

forests in a context of imputation for item nonresponse and data integration; see also Tipton

et al. (2013); De Moliner and Goga (2018) for applications of random forests in surveys. A

number of empirical investigations have been conducted to assess the performance of machine

learning procedures in a context of propensity score estimation for unit nonresponse; e.g.,

Lohr et al. (2015), Gelein (2017) and Kern et al. (2019).

The machine learning procedures described in Section 3 slightly di�er from their tradi-

tional implementation because of the inclusion of the sampling weights in the construction

of imputed values. However, it should be noted that most of the machine learning software

packages for obtaining predicted values assume simple random sampling and cannot handle

unequal weights. Modifying machine learning algorithms to account for unequal weights may

prove challenging. When the design features (e.g., sampling weights, stratum indicators, etc.)

are related to the survey variable requiring imputation, failing to incorporate them in the

models may lead to biased estimators. To cope with this issue, we suggest to include all the

appropriate design variables in the speci�cation of the model. Standard machine learning

software packages may then be safely used for creating a set of imputed values. In Section

4, we use Poisson sampling with inclusion probabilities proportional to a size variable X

to select repeated samples from the �nite population. The size variable X being related to

the variable requiring imputation, including the X-variable in the speci�ed models led to

satisfactory results.

2 Preliminaries

Consider a �nite population U = {1, 2, ..., N} of size N . Let Y denote a survey variable and

yi be the y-values attached to unit i, i = 1, · · · , N. We are interested in estimating (i) the

�nite population total of the y-values, ty =
∑

i∈U yi and (ii) the �nite population quantile of

order γ de�ned as Qγ := inf {t ∈ R;FN (t) > γ} , where

FN (t) =
∑
i∈U

1 (yi 6 t) /N

denotes the �nite population distribution function.
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From U, we select a sample S, of size n, according to a sampling design P (S = s) with

�rst-order inclusion probabilities πi = Pr(i ∈ S).

A complete data estimator of ty is the well-known Horvitz-Thompson estimator

t̂π =
∑
i∈S

yi
πi
, (1)

which is design-unbiased for ty provided that πi > 0 for all i ∈ U . A complete data estimator

of the �nite population quantile Qγ is given by

Q̂γ := inf
{
t ∈ R; F̂ (t) > γ

}
, (2)

where

F̂ (t) =
1

N̂

∑
i∈S

1 (yi 6 t)

πi
(3)

with N̂ =
∑

i∈S 1/πi denoting the Horvitz-Thompson estimator of the population size N .

Under mild regularity conditions (Wang and Opsomer, 2011), the complete data estimator

Q̂γ is design-consistent for Qγ .

In practice, the Y -variable may be prone to missing values. Let ri be a response indicator

such that ri = 1 if yi is observed and ri = 0, otherwise. Let Sr = {i ∈ S; ri = 1} denote the

set of respondents, of size nr, and Sm = {i ∈ S; ri = 0} the set of nonrespondents, of size

nm, such that Sr ∪ Sm = S and nr + nm = n. Available to the imputer is the data (yi,xi)

for i ∈ Sr as well as the values of the vector xi for i ∈ Sm.

Let ŷi be the imputed value used to replace the missing value yi and

ỹi = riyi + (1− ri) ŷi

be the ith value of the Y -variable after imputation. Point estimators of ty and Qγ after

imputation, often referred to as imputed estimators, are readily obtained from the complete

data estimators (1) and (2) by replacing yi with ỹi. This leads to

t̂imp =
∑
i∈S

ỹi
πi

(4)

and

Q̂γ,imp = inf
{
t ∈ R; F̂imp(t) > γ

}
, (5)

5



where

F̂imp(t) =
1

N̂

∑
i∈S

1 (ỹi 6 t)

πi
(6)

denotes the imputed estimator of FN (t).

Remark 2.1. The population total ty, the distribution function FN (t) and the quantile of

order γ, Qγ , may all be obtained as the solution of the following census estimating equation

(Binder, 1983; Chen and Haziza, 2019):

UN (θN ) =
∑
i∈U

u(yi; θN ) = 0, (7)

where θN is a generic notation denoting a �nite population parameter and u(yi; θ) is a function

of θN . We assume that a solution to (7) exists and is unique. For instance, the population

total ty can be obtained as a solution of (7) with u(yi; θN ) = yi−n−1πiθN ; the �nite population

distribution function FN (t) can be obtained as a solution of (7) with u(yi; θN ) = 1 (yi 6 t)−

θN . Finally, the quantile Qγ of order γ can be obtained as a solution of (7) with u(yi; θN ) =

1 (yi 6 θN ) − γ. Other �nite population parameters can be obtained as a solution of (7);

e.g., see Chen and Haziza (2019). The imputed estimators t̂imp, Q̂γ,imp and F̂imp(t) given

respectively by (4)-(6) can be obtained by solving the following sample estimating equation:

Ûimp(θ̂imp) =
∑
i∈S

1

πi
u(ỹi; θ̂imp) = 0,

where θ̂imp denotes an imputed estimator of θN .

To construct the imputed values ŷi, we postulate the following imputation model ξ:

Eξ(yi|xi) = f(xi), (8)

Vξ (yi|xi) = σ2
i ,

Covξ (yi, yj |xi,xj) = 0 for i 6= j,

where f is an unknown function. Often, the variance structure σ2
i is assumed to have the

form σ2
i = σ2ai, where ai > 0 is a known coe�cient attached to unit i and σ2 is an unknown

parameter.
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We assume that the data are Missing At Random (Rubin, 1976):

f(yi|xi, ri = 1) = f(yi|xi, ri = 0). (9)

That is, we assume that the distribution of Y given x is the same for both respondents

and nonrespondents. If Condition (9) holds, the imputed values can be safely generated from

f(yi|xi, ri = 1), which can be estimated from the observed data. In the context of imputation,

the properties of point estimators are evaluated with respect to the joint distribution induced

by the imputation, the sampling design and the unknown nonresponse mechanism. This

framework is often referred to as the ξpq-framework (Chen and Haziza, 2019). Note that

our simulation setup in Section 4 is consistent with the ξpq-framework as the simulation

process involves (i) generating repeated �nite populations; (ii) selecting a sample from each

of population and (iii) generating a set of response indicators in each sample.

Deterministic imputation consists of replacing the missing yi by ŷi = f̂(xi), where f̂ is

an estimator of the unknown regression function f based on the responding units i ∈ Sr.

However, deterministic imputation methods tend to distort the distribution of the survey

variable Y requiring imputation, potentially leading to biased estimators of quantiles (Haziza,

2009; Chen and Haziza, 2019). To cope with this issue, one can recourse to random imputation

that consists of adding an appropriate amount of random noise to the deterministic value

f̂(xi). More speci�cally, let ej := σ̂−1
j {yj − f̂(xj)} for j ∈ Sr, where σ̂j of an estimator of σj

(see Remark 2.2 below). We de�ne the standardized residual

ẽj = ej −
∑

`∈Sr
w`e`∑

`∈Sr
w`

, j ∈ Sr.

In the case of random imputation, the missing yi is replaced by

ŷi = f̂(xi) + σ̂iêi, (10)

where êi is selected at random from the set of standardized residuals {ẽj}j∈Sr with probability

wj/
∑

`∈Sr
w`.

Remark 2.2. To obtain an estimator σ̂i of σi, one can postulate a model E(ε2i | xi) = m(xi),

where m is an unknown function. An estimator σ̂2
i of σ2

i is obtained by �tting a parametric
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or a nonparametric procedure with the square residuals e2
i as the response and xi as the set

of predictors.

In Section 3, except for the parametric imputation procedure discussed in Section 3.1, all

the other procedures (Section 3.2-3.9) are nonparametric. In Section 4, these procedures are

compared empirically in terms of bias and e�ciency under a variety of settings.

3 A description of imputation methods

3.1 Parametric regression imputation

Parametric regression assumes that the �rst moment (8) is given by

Eξ(yi|xi) = f(xi,β), (11)

where β is a vector of coe�cients to be estimated and f(·) is a predetermined function.

An estimator β̂ of β is obtained by solving the following estimating equations based on the

responding units: ∑
i∈Sr

wi
σ2
i

{yi − f(xi,β)} ∂f(xi,β)

∂β
= 0, (12)

where wi > 0 is a weight attached to element i. Common choices for wi include wi = 1 and

wi = π−1
i (Chen and Haziza, 2019). The imputed value ŷi under deterministic parametric

regression imputation is given by

ŷi = f(xi, β̂), i ∈ Sm. (13)

A special case of (13) is f(xi,β) = x>i β, which corresponds to the customary linear regression

model. In this case, the imputed value (13) reduces to

ŷi = x>i β̂, i ∈ Sm, (14)

where

β̂ =

∑
j∈Sr

wjσ
−2
j xjx

>
j

−1 ∑
j∈Sr

wjσ
−2
j xjyj . (15)

8



The imputed value ŷi given by (14) can be written as a weighted sum of the respondent

y-values:

ŷi =
∑
j∈Sr

w′ijyj , i ∈ Sm, (16)

where w′ij = x>i

(∑
j′∈Sr

wj′σ
−2
j′ xj′x

>
j′

)−1
wjσ

−2
j xj . If the intercept is among the X-variables,

then
∑

j∈Sr
w′ij = 1 for all i ∈ Sm. A random counterpart of (13) is given by (10).

Another important special case of (13) is the logistic regression model,

f(xi,β) = exp(x>i β)/(1 + exp(x>i β)),

which can be used for modeling binary variables. An estimator of β is obtained by solving

(12), which requires a numerical algorithm such as the Newton-Raphson procedure. To

eliminate the possibility of an impossible imputed value, a missing value to a 0− 1 variable

is typically imputed by ŷi, where ŷi is a realization of a Bernoulli variable with parameter

f(xi, β̂).

Under deterministic or random parametric regression imputation, the imputed estimator

t̂imp is consistent for ty provided that the �rst moment of the imputation model (8) is correctly

speci�ed. However, this type of imputation may lead to biased estimators of quantiles. In

contrast, the use of a random parametric regression imputation procedure tend to preserve

the distribution of the variable requiring imputation, leading to valid estimators; see Chen

and Haziza (2019) for a discussion.

3.2 Imputation classes : the score method

The score method (Little, 1986; Haziza and Beaumont, 2007) consists of partitioning the

sample S into H (say) imputation classes and imputing the missing values within each class

independently from one class to another. It can be implemented as follows:

Step 1: For all i ∈ S, compute the preliminary values ŷLRi = x>i β̂, where β̂ is given by (15).

Step 2: Compute the empirical quantiles q1, q2, . . . , qH−1 of order 1/H, 2/H, . . . , (H − 1)/H

of the ŷLR-values.
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Step 3: Split the sample S into H classes, C1, . . . , Ch, . . . , CH , such that

Ch =
{
i ∈ S : ŷLRi ∈ [qh−1; qh)

}
, h = 1, . . . ,H,

with q0 = −∞ and qH = +∞.

It is common practice to use either mean imputation or random hot-deck imputation within

classes. For mean imputation, the imputed value for missing yi in the hth imputation class

is given by

ŷi =

∑
j∈Sr∩Ch

wjyj∑
j∈Sr∩Ch

wj
=

∑
j∈Sr∩Ch

w′ijyj , i ∈ Sm ∩ Ch,

where w′ij = wj/
∑

j′∈Sr∩Ch
wj′ are the same for all i ∈ Sm∩Ch and

∑
j∈Sr∩Ch

w′ij = 1 for all

i ∈ Sm ∩ Ch. For random hot-deck imputation, the imputed value is given by ŷi = yj , where

the donor j ∈ Sr ∩ Ch is selected at random from the set of donors belonging to the hth

imputation class with probability wj/
∑

j′∈Sr∩Ch
wj′ . Note that random hot-deck imputation

within classes can be viewed as mean imputation within classes with added residuals.

3.3 K-nearest neighbours imputation

K-nearest neighbour (KNN) imputation is one of the simplest and widely used nonparametric

imputation procedures. No explicit assumption is made about the regression function f

relating Y and X. KNN imputation consists of replacing the missing value of a recipient by

the weighted average of the y-values of its K closest respondents in terms of the X-variables.

Nearest-neighbour (NN) imputation corresponds to the limiting case of KNN obtained

with K = 1. NN is a donor imputation belonging to the class of hot-deck procedures (Chen

and Shao, 2000) since a missing value is replaced by an actual respondent y-value from the

same �le. NN imputation is especially useful for imputing categorical or discrete Y -variables;

e.g., see Chen and Shao (2000), Beaumont and Bocci (2009) and Yang and Kim (2019).

Let NK(i) be the set of K responding units closest to xi. Any distance function in Rp

may be used to measure the closeness between two vectors xi and xj . In the simulation study

presented in Section 4, we used the customary Euclidean distance. The KNN imputed value

for missing yi is given by

ŷi =

∑
j∈NK(i)∩Sr

wjyj∑
j∈NK(i)∩Sr

wj
, i ∈ Sm.
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The imputed value ŷi obtained withKNN can be written as a weighted sum of the respondent

y-values:

ŷi =
∑
j∈Sr

w′ijyj , i ∈ Sm,

where w′ij = wj1(j ∈ NK(i))/
∑

j′∈NK(i)∩Sr
wj′ for j ∈ Sr with

∑
j∈Sr

w′ij = 1. KNN

imputation is a locally weighted procedure since the respondents j lying not close enough to

unit i with respect to the X-variables are assigned a weight equal to 0; i.e., w′ij = 0. The

indicator function in the expression of w′ij can be replaced by a one-dimensional continuous

kernel smoother Kh, whose role is to control the size of the weight through a tuning parameter

h : the units j lying farther from unit i will be assigned a smaller weight than units lying

close to it (Hastie et al., 2011).

The imputed estimator underKNN imputation tends to be ine�cient when the dimension

p of x is large. Indeed, as p increases, it becomes more di�cult to �nd enough respondents

around the point at which we aim to make a prediction. This phenomenon is known as the

curse of dimensionality (Hastie et al., 2011, Chap. 1) for a more in-depth discussion ok the

KNN procedure. Also, it su�ers from a model bias which is of order (K/n)1/p. Nearest-

neigbour imputation for missing survey data has been considered in Chen and Shao (2000),

Beaumont and Bocci (2009) and Yang and Kim (2019).

3.4 B-splines and additive model nonparametric regression

Spline regression is a �exible nonparametric method for �tting non-linear functions f(·). It

can be viewed as a simple extension of linear models. For simplicity, we start with a univariate

X-variable supported on the interval [0; 1]. A spline function of order v with κ equidistant

interior knots, 0 = ξ0 < ξ1 < ... < ξκ < ξκ+1 = 1, is a piecewise polynomial of degree v − 1

between knots and smoothly connected at the knots. These spline functions span a linear

space of dimension of q = v + κ with a basis function given by the B-splines functions:

B`(x) = (ξ` − ξ`−v)
v∑
l=0

(ξ`−l − x)v−1
+ /Πv

r=0,r 6=l(ξ`−l − ξ`−r), ` = 1, . . . , q,

where (ξ`−l−x)v−1
+ = (ξ`−l−x)v−1 if ξ`−l ≥ x and equal to zero, otherwise; see (Schumaker,

1981; Dierckx, 1993). The B-spline basis is appealing because the basis functions are strictly
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local: each function B`(·) has the knots ξ`−v, . . . , ξ` with ξr = ξmin(max(r,0),κ+1) for r =

`− v, . . . , ` (Zhou et al., 1998), which means that its support consists of a small, �xed, �nite

number of intervals between knots. The unknown function f(·) is then approximated by

f̂(·), a linear combination of basis functions {B`}q`=1 with coe�cients determined by a least

squares criterion computed on the data (yi, xi)i∈Sr (Goga et al., 2019). The missing value yi

is then imputed by ŷi = f̂(xi), where

f̂(xi) =

q∑
`=1

β̂`B`(xi) = b>i β̂, xi ∈ [0; 1], (17)

with bi = (B`(xi))
q
`=1 denoting the vector of B-spline basis functions, and β̂ = (β̂`)

q
`=1

minimizes

β̂ = arg min
β∈Rq

∑
j∈Sr

wj

(
yj −

q∑
`=1

β`B`(xj)

)2

=

∑
j∈Sr

wjbjb
>
j

−1 ∑
j∈Sr

wjbjyj ; (18)

see Goga et al. (2019). The expression of β̂ is similar to that obtained with linear regression

imputation given by (15) but unlike (15), the estimator (18) uses the B-spline functions

B1, . . . , Bq, whose number can vary as a function of the number of knots κ and the order v

of the B-spline functions. The degree v of the piecewise polynomial does not seem to have a

great impact on the model �ts if a large enough number of interior knots is used (Ruppert

et al., 2003). This is why quadratic or cubic splines are mostly used in practice and an

adequate number of interior knots will allow to obtain �exible �ts that capture local non-

linear trends in the data. Knots are usually placed at the X-quantiles and their number may

have a great e�ect on the model �ts: a large value of κ will lead to over�tting, in which case a

penalization criterion may be used in (18), while a small value of κ may lead to under�tting.

Ruppert et al. (2003) give a practical rule for choosing the number κ of interior knots :

κ = min

(
1

4
× number of unique xi, 35

)
.

The imputed value (17) with B-spline regression can be also written as a weighted sum

of the respondent y-values similar to (16), ŷi =
∑

j∈Sr
w′ijyj for all i ∈ Sm with weights
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now given by w′ij = b>i

(∑
j′∈Sr

wj′bj′b
>
j′

)−1
wjbj . These weights do not depend on the

y-values as in linear regression imputation and
∑

j∈Sr
w′ij = 1 since

∑q
j=1Bj(x) = 1 for

all x ∈ [0; 1]. Unlike linear regression imputation, the weights w′ij are now local due to the

B-spline functions ensuring more �exibility to model local nonlinear trends in the data.

We now turn to the multivariate case. For ease of presentation, we con�ne to the case of

two predictors, X1 and X2. Additive models provide a simple way to model nonlinear trend

in the data (Hastie and Tibshirani, 1986) and extend the standard linear model by allowing

non-linear functions between the response variable Y and each of the explanatory variables,

while maintaining additivity. In the case of two predictors, the relationship between Y and

X1, X2 is expressed as a linear combination of unknown smooth functions f1 and f2:

yi = α+ f1(xi1) + f2(xi2) + εi, (19)

where the εi's are independent errors with mean equal to zero. The model (19) is restricted

to be additive and does not account for the potential interactions among the predictors.

Accounting for interactions between X1 and X2 would require the additional predictor X1X2

to be included in the model, leading to

y = f1(x1) + f2(x2) + f3(x1, x2) + ξ,

where f3 is a low-dimensional interaction function �tted by using two-dimensional smoothers,

such as local regression or two-dimensional splines. This is beyond the scope of this article.

When the number of predictors is large, the number of potential interactions may be consid-

erable, making the implementation of this procedure challenging. In such situations, random

forests and boosting, discussed in sections 3.6 and 3.7, provide more �exible approaches. But,

as pointed out by James et al. (2015), additive models provide a useful compromise between

linear and fully nonparametric models.

The unknown functions f1 and f2 in (19) can be estimated by using two B-spline basis

B1 = {B11, . . . , B1q1} and B2 = {B21, . . . , B2q2}, which leads to f̂1(xi1) =
∑q1

`=1 β̂1`B1`(xi1)

and f̂2(xi2) =
∑q2

`=1 β̂2`B2`(xi2), where β̂1` and β̂2` are determined, as before, by a least square

criterion. To ensure the identi�ability of α, additional constraints such as
∑nr

i=1 f̂1(xi1) =∑nr
i=1 f̂2(xi2) = 0 are usually imposed. With these constraints, the estimators (α̂, β̂1, β̂2) are
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simply obtained as a regression coe�cient estimator, for β̂1 = (β̂1`)
q1
`=1 and β̂2 = (β̂2`)

q2
`=1.

The imputed value for missing yi is given by

ŷi = α̂+ f̂1(xi1) + f̂2(xi2), i ∈ Sm. (20)

In practice, a back�tting algorithm is used to compute f1(·) and f2(·) iteratively (Hastie

et al., 2011). However, when the number p of explanatory variables is large, the algorithm

may not converge and additive models tend to breakdown. Finally, random versions of (17)

and (20) are obtained by adding random residuals as in (10).

3.5 Regression trees

Regression trees through the CART algorithm have been initially suggested by Breiman

(1984). Tree-based methods are simple to use in practice for both continuous and categorical

variables and useful for interpretation. They form a class of algorithms which recursively

split the p-dimensional predictor space, the set of possible values for the X-variables, into

distinct and non-overlapping regions of Rp. The prediction f̂tree(xi) at point xi corresponds

to the average of the respondent y-values falling in the same region as unit i. When the

number of X-variables is not too large, the splitting algorithm is quite fast, otherwise it may

be time-consuming.

Following Creel and Krotki (2006), we slightly adapt the original CART algorithm as

well as the estimation procedure of f(·). The CART algorithm recursively searches for the

splitting variable and the splitting position (i.e., the coordinates on the predictor space where

to split) leading to the greatest possible reduction in the residual mean of squares before and

after splitting. More speci�cally, let A be a region or node and let #(A) the number of

units belonging to A. A split in A consists of �nding a pair (`, z), where ` is the variable

coordinates taking value between 1 and p, and z is the position of the split along the `th

coordinate, within the limits of A. Let CA be the set of all possible pairs (`, z) in A. The

splitting process is performed by searching for the best split (`∗, z∗) in the sense that

(`∗, z∗) = arg max
(`,z)∈CA

L(`, z) (21)

with

14



L(`, z) =
1

#(A)

∑
i∈Sr

1(xi ∈ A)
{

(yi − ȳA)2 − (yi − ȳAL
1(Xi` < z)− ȳAR

1(Xi` > z))2
}
,

(22)

where Xij is the measure of jth variable Xj for the ith individual, AL = {X ∈ A;X` < z},

AR = {X ∈ A;X` > z} and X` the `th coordinate of X; ȳA is the average of yi for those

units i such that xi ∈ A. In (21), 1(xi ∈ A) = 1 if xi ∈ A, and 1(xi ∈ A) = 0, otherwise.

From (21), the best split (`∗, z∗) is the one that produces a tree with the smallest residuals

sum of squares (James et al., 2015, Chap. 8); that is, we seek (`∗, z∗) that minimizes

(`∗, z∗) = arg min
(`,z)∈CA

 ∑
i∈Sr:xi∈A

(yi − ȳAL
)2
1(Xi` < z) +

∑
i∈Sr:xi∈A

(yi − ȳAR
)2
1(Xi` > z)

 .

The missing yi is replaced by ŷi = f̂tree(xi), which corresponds to the weighted average of

the respondent y-values falling into the same region as i ∈ Sm :

ŷi =
∑
j∈Sr

wj1(xj ∈ A(xi))∑
j′∈Sr

wj′1(xj′ ∈ A(xi))
yj , i ∈ Sm, (23)

where A(xi) is the region from Rp containing the point xi. With tree-based methods, the

imputed value ŷi can also be expressed as

ŷi =
∑
j∈Sr

w′ijyj , i ∈ Sm, (24)

where w′ij = wj1(xj ∈ A(xi))/
∑

j′∈Sr
wj′1(xj′ ∈ A(xi)) with

∑
j∈Sr

w′ij = 1. With regres-

sion trees and tree-based methods in general, the non-overlapping A-regions obtained by

means of the CART algorithm depend on the respondent data {(yi,xi)}i∈Sr ; i.e., the same

set of X-variables with a di�erent set of respondents will lead to di�erent non-overlapping

A-regions. The resulting imputed estimator is similar to a post-strati�ed estimator based on

adaptative post-strata.

Regression trees are simple to interpret and often exhibit a small model bias. However,

they tend to over�t the data if each A-region contains too few elements. To cope with

this issue, regression trees may be pruned, meaning that super�uous splits (with respect to

a penalized version of (21)) are removed from the tree. Pruning a regression tree tends to
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reduce its model variance at the expense of increasing the model bias; see Hastie et al. (2011).

A random version of (24) is obtained by adding random residuals as in (10). Bagging and

boosting methods may be used to improve the e�ciency of tree-based procedures. This is

discussed next.

3.6 Random forests

Random forest (Breiman, 2001) is an ensemble method which achieves better accuracy than

tree-regression methods by creating a large number of di�erent regression trees and combining

them to produce more accurate predictions than a single model would. Random forests are

especially e�cient in complex settings such as small sample sizes, high-dimensional predictor

space and complex relationships (Hamza and Larocque (2005), Díaz-Uriarte and de Andrés

(2006), among others). Since the article of Breiman (2001), random forests have been exten-

sively used in various �elds such as medicine (Fraiwan et al., 2012), time series analysis (Kane

et al., 2014), agriculture (Grimm et al., 2008), to cite just a few. Recently, their theoretical

properties have been established by Scornet et al. (2015).

There exist a number of random forest algorithms (see Biau and Scornet (2016) for dis-

cussion). A widely used algorithm proceeds as follows (Dagdoug et al., 2020b):

Step 1: Consider B bootstrap data sets D1, D2, ..., DB, obtained by selecting with replace-

ment nr pairs (yi,xi) from D = {(yi,xi)}i∈Sr
.

Step 2: In each bootstrap data set Db for b = 1, . . . , B, �t a regression tree and determine

the prediction f̂
(b)
tree for the unknown f in (8) as described in section 3.5. For each re-

gression tree, only p′ variables randomly chosen among the p variables are considered

in the search for the best split in (21).

Step 3: The imputed value for missing yi is obtained by averaging the predictions at the

point xi of the B regression tree predictions:

ŷi =
1

B

B∑
b=1

f̂
(b)
tree(xi), i ∈ Sm, (25)

where f̂
(b)
tree(xi) is the prediction for the unknown f in (8) computed at xi and obtained

with the bth regression tree as described in Section 3.5. More speci�cally, from (23),
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the prediction f̂
(b)
tree(xi) corresponds to the weighted average of y-values for j ∈ Sr

falling in the same region A(b)(xi) containing i ∈ Sm.

A random version of (25) is obtained by adding random residuals as in (10). Although

random forests are based on fully-grown trees, the accuracy of the predictions is improved by

considering bootstrap of units and model aggregation, a procedure called bagging and used

in statistical learning for reducing the variability. The number B of regression trees should

be large enough to ensure a good performance without harming the processing time; see

Scornet (2017). The second improvement brought by random forest is the random selection

at each split of p′ predictors, achieving decorrelated trees. The value of p′ is typically chosen

as p′ ' √p (Hastie et al., 2011). In random forest algorithms, a stopping criterion is usually

speci�ed so that the algorithm stops once a certain condition (e.g., on the minimum number

of units in each �nal nodes) is met.

3.7 Least square tree-boosting and other tree-boosting methods

As in bagging, boosting (Friedman, 2001) is a procedure that can be applied to any statistical

learning methods for improving the accuracy of model predictions and is typically used with

tree-based methods. While bagging involves the selection of bootstrap samples to create

many di�erent predictions, boosting is an iterative method that starts with a weak �t (or

learner) and improves it at each step of the algorithm by predicting the residuals of prior

models and adding them together to make the �nal prediction.

To understand how boosting works, consider a regression tree with non-overlapping re-

gions A1, . . . , AJ , expressed as

T (x,Θ) =

J∑
j=1

γj1(xi ∈ Aj). (26)

The parameter Θ = {γj , Aj}Jj=1 is obtained by minimizing

Θ̂ = argmin
Θ

J∑
j=1

∑
i:xi∈Aj

L(yi, γj) = argmin
Θ

∑
i∈Sr

L(yi, T (xi,Θ)), (27)

where L denotes a loss function; e.g., the quadratic loss function. With the latter, given a

region Aj , estimating the constant γj is usually straightforward as γ̂j = yj the average the y-
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values belonging to Aj . However, �nding the regions {Aj}Jj=1 and solving (27) in a traditional

way may prove challenging and computationally intensive as it requires optimizing over all

the parameters jointly. To overcome this di�culty, one may use a greedy top-down recursive

partitioning algorithm to �nd {Aj}Jj=1 as described in Section 3.5. Alternatively, one may

split the optimization problem (27) into many simple subproblems that can be solved rapidly.

Boosting uses the latter and considers that the unknown f has the following additive form:

f(x) =

M∑
m=1

T (x,Θm), (28)

where T (x,Θm) for m = 1, . . . ,M are trees determined iteratively by using a forward stage-

wise procedure (Hastie et al., 2011): at each step, a new tree is added to the expansion

without modifying the coe�cients and parameters of trees already added. Each added tree,

usually referred to as a weak-learner, has a small size and slowly improves the estimation of

f in areas where it does not perform well. For the quadratic loss function, after accounting

for the survey weights, the algorithm becomes:

Step 1: Initialize the algorithm with a constant value: f̂0(xi) = 0 and

γ̂0 = arg min
γ∈R

∑
i∈Sr

wi(yi − γ)2 =
1∑

i∈Sr
wi

∑
i∈Sr

wiyi.

Step 2: For m = 1 to M :

(a) Given the current model f̂m−1, �t the regression tree that best predicts the residuals

values yi − f̂m−1(xi), i ∈ Sr and get the terminal regions (Ajm)Jmj=1.

(b) Given the terminal regions Ajm, the optimal constants γ̂jm are found as follows:

γ̂jm = arg min
γjm

∑
i∈Sr:xi∈Ajm

wiL(yi, f̂m−1(xi)+γjm) = arg min
γjm

∑
i∈Sr:xi∈Ajm

wi(yi−f̂m−1(xi)−γjm)2

for j = 1, . . . , Jm.

(c) Update f̂m(xi) = f̂m−1(xi) + T (xi, Θ̂m) where Θ̂m = {Ajm, γ̂jm}Jmj=1 and T (xi, Θ̂m) =∑Jm
j=1 γ̂jm1(xi ∈ Ajm).
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Step 3: Output f̂M (xi) and get the imputed value

ŷi = f̂M (xi). (29)

A random version of (29) is obtained by adding random residuals as in (10). The number M

of trees should not be too large and, for better performances, Hastie et al. (2011) recommend

to consider the same number of splits Jm = J at each iteration. The value of J re�ects the

level of dominant interactions between the X-variables. The value J = 2 (one split) produces

boosted models with only main e�ects without interactions, whereas the value J = 3 allows

for two-variable interactions. Empirical studies suggest that J = 6 generally leads to good

results. As in ridge regression, shrinkage is used with tree boosting. In this case, Step 2. (c)

of the above algorithm is replaced by a penalized version:

f̂m(xi) = f̂m−1(xi) + νT (xi, Θ̂m),

where the parameter ν ∈ (0, 1), called learning rate, is used to penalized large trees; usually

ν = 0.1 or 0.01. Both M and ν control the performance of the model prediction.

3.7.1 XGBoost

Chen and Guestrin (2016) suggested a scalable end-to-end tree boosting system called XG-

Boost which is extremely fast. Here, we adapt the algorithm in order to account for the

survey weights. Consider again a tree with formal expression given in (26). This tree learn-

ing algorithm consists of minimizing the following objective function at the m-th iteration:

Θ̂m = arg min
Θm

{
∑
i∈Sr

wiL(yi, f̂m−1(xi) + T (xi,Θm))}+ Ω(T (x,Θm)), (30)

where the penalty function Ω(T (x,Θm)) = γJ + λ
2

∑J
j=1 γ

2
j penalizes large trees in order

to avoid over�tting. The search problem is optimized by using a second-order Taylor ap-

proximation of L, and ignoring the constant term, the new optimization problem reduces

to:

Θ̂m = arg min
Θm

J∑
j=1

γj ∑
i∈Sr:xi∈Aj

wigi +
1

2
γ2
j (

∑
i∈Sr:xi∈Aj

wihi + λ)

+ γJ, (31)
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where gi and hi are the �rst and second-order derivatives of the loss function computed at

f̂m−1(xi). With the quadratic loss function, gi = 2(f̂m−1(xi) − yi) and hi = 2. The new

objective function from (31) is a second-order polynomial with respect to γj , so the optimal

γj is easily obtained as γ
∗
j = −(

∑
i∈Sr:xi∈Aj

wigi)/(
∑

i∈Sr:xi∈Aj
wihi+λ), leading to the opti-

mal value of the objective function as −(1/2)
∑J

j=1(
∑

i∈Sr:xi∈Aj
wigi)

2/(
∑

i∈Sr:xi∈Aj
wihi +

λ) + γJ. This value is then used next as a decision criterion in a greedy top-down recursive

algorithm to �nd the optimal regions Aj of the m-th tree to be added.

3.7.2 Bayesian additive regression trees (BART)

Bayesian additive regression trees (Chipman et al., 2010, BART) is similar to boosting in the

sense that the unknown regression function f has an additive form as in (28). While boosting

is completely nonparametric, BART makes a Gaussian assumption on the model errors:

yi = f(xi) + εi, εi ∼ N
(
0, σ2

)
,

where f(x) =
∑M

m=1 T (x,Θm) =
∑M

m=1 Tm(x,Γm) is assumed to be a sum of tree functions

and Γm = {γj , γ2, . . . , γJm} is the set of parameter values associated with the Jm terminal

nodes in each tree T (x,Θm).

As stated in Chipman et al. (2010), although similar in spirit to gradient boosting, BART

di�ers from boosting algorithms both by the way it weakens the individual trees by relying

on a Bayesian framework, but also on how it performs the iterative �tting. More speci�cally,

a prior is speci�ed for the parameters of the model (T1,Γ1), (T2,Γ2), . . . , (Tm,Γm) and σ2.

The prior of Tm can be decomposed into three components :

1. The probability that a node at depth J is a terminal node is given by α (1 + J)−β for

α ∈ (0; 1) , β ≥ 0.

2. The distribution on the splitting variable assignments in each interior node is uniform.

3. The distribution of the splitting value conditional on the chosen splitting variable is

also uniform.

Borrowing the illustrative example of Chipman et al. (2010), with the parameters

α = 0.95 and β = 2, trees with 1, 2, 3, 4, 5 terminal nodes receive prior probabilities of
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0.05, 0.55, 0.28, 0.09 and 0.03, respectively. Therefore, as in boosting, the BART model tends

to favor trees with a small number of terminal nodes. However, the process of restricting the

depth of regression trees (or equivalently the number of terminal nodes) in BART is di�erent

from the one used in boosting. For boosting, the depth of the trees is �xed by the user and

is similar for all trees used in the forest. For BART, the user speci�es a probability for the

trees to have a certain number of terminal nodes. As a result, the number of terminal nodes

is random rather tan �xed. Therefore, it is likely that trees have only a small number of

terminal nodes with the BART model, but this number can vary depending on the data at

hand. For γj , a conjugate prior is chosen to make computations simpler; e.g., p(γjm|Tm)

is assumed to be N (γγ , σ
2
γ). Similarly, a conjugate prior is chosen for σ2, e.g., the inverse

chi-square distribution. To generate the posterior distribution, the authors suggest the use of

a Gibbs sampler. For general guidelines about the choices of these parameters, see Chipman

et al. (2010). The imputed value for missing yi is obtained as with the general boosting

algorithm given in Section 3.7, where the prediction of each regression tree is the weighted

average of the values in the terminal node containing xi.

3.8 Cubist algorithm

Cubist is an updated implementation of the M5 algorithm introduced by Quinlan et al. (1992)

and Quinlan (1993). It is an algorithm based on regression trees and linear models, among

other ingredients. Initially, Cubist was only available under a commercial license. In 2011,

the code was released as open-source. The algorithm proceeds as follows (Kuhn and Johnson,

2013, Chap. 8):

Step 1: Create a partition P = {A1, A2, ..., AT } of Rp. To do so, let CA be the set of all

possible splits in a node A of cardinality `, that is, the set of all possible pairs

(position, variable). Then, the split is performed using the following criterion:

L′(z, j) = arg max
(z,j)∈CA

√√√√√∑
i∈Sr

yi −
 1

nr

∑
j′∈Sr

yj′

2

−
∑̀
h=1

nh
nr

√√√√√ ∑
i:xi∈Dh

yi −
 1

nr

∑
j′:xi∈Dh

yj′

2

,

where D1, . . . , D` denote the ` non-terminal nodes after each of the ` − 1 previous

splits and nh denotes the cardinal of elements in the node Dh.
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Step 2: In each node, a linear model is �tted between the survey variable Y and the auxiliary

variables that have been used to split the tree. More speci�cally, consider the jth

terminal node Aj . Then, there exists a path from the �rst node to the current node

Aj in the graph formed by the tree. This path uses p′j variables among the set

{X1, X2, ..., Xp}. For instance, assume that a partition of 5 elements is created by

the tree shown in Figure 1. Then, the linear model in the node A1 is �tted using the

variables that created the path in red, that is, X1, X4 and X6, and so p′1 = 3 for this

node. The linear model �tted in the node A4 uses only one variable, X1, (the green

path), so p′4 = 1. The coe�cients βj ∈ Rp
′
j of the linear model in the node Aj are

Figure 1: Example of a graph induced by a tree algorithm.

estimated using the customary weighted least squares criterion:

β̂j = arg min

βj∈R
p′
j

∑
i∈Sr

wi

{
yi − β>j x

(j)
i

}2
1 (xi ∈ Aj) ,

where x
(j)
i is the vector containing the measurements of the p′j variables for unit i.

Step 3: In each node, a backward elimination procedure is performed using the adjusted error

rate (AER) criterion. For instance, in the jth terminal node, we have

AER(Aj) =
#(Aj) + p∗

#(Aj)− p∗
∑

i∈Sr:xi∈Aj

|yi − ŷi|,
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where p∗ denotes the number of variables used in the current model which predicts

ŷi for a prediction at the point xi. Each variable in the initial model is dropped and

the AER is recomputed. Terms are dropped from the model as long as the AER

decreases.

Step 4: Once the tree is fully grown, it is pruned by removing unnecessary splits. Starting

at the terminal nodes, the AER is computed with and without the node. Whenever

the node does not result in a decrease of the AER, it is pruned. This process is

performed until no more node can be removed.

Step 5: To avoid over-�tting, a smoothing procedure is performed. Let ŷi(j) be the predicted

value obtained by �tting the linear model in the jth child node and ŷi(p) be the

predicted value obtained from the direct parent node. These predictions are combined

as

ŷi = ayi(j) + (1− a)ŷi(p),

where

a =
V̂ (e(p))− Ĉov(e(j), e(p))

V̂ (e(j) − e(p))

with ei(j) = yi − ŷi(j) denoting the ith coordinate of the vector e(j), ei(p) = yi − ŷi(p)

denoting the ith coordinate of the vector e(p) and V̂ (·) and Ĉov(·, ·) denoting the

empirical model variance and covariance, respectively.

Step 6: Cubist can be used as an ensemble model. Once the Cubist algorithm is �tted, the

subsequent iterations of the algorithm use the previously trained algorithm to de�ne

an adjusted response y
(m)
i so that the next iteration of the algorithm uses

y
(m)
i = yi − (y

(m−1)
i − yi),

where y
(m)
i is the value of the adjusted response yi for the mth iteration of the Cubist

algorithm.

Step 7: The �nal imputed value for missing yi is derived using a K nearest-neighbour rule:

ŷi =
1

K

K∑
k=1

1

0.5 + dk
(tk + ŷ(k) − t̂k), (32)
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where dk denotes the distance between xi and the kth neighbor, tk denotes the

outcome of the kth neighbor and t̂k its predicted value.

A random version version of (32) is obtained by adding random residuals as in (10).

3.9 Support vector regression

Support vector machines (Vapnik, 1998, 2000; Cortes and Vapnik, 1995; Smola and Schölkopf,

2004) belong to the class of supervised learning algorithms and may be used for regression

analysis. We start by considering the linear regression model

f(xi) = β0 + xTi β, β0 ∈ R, β ∈ Rp,

before discussing the case of nonlinear relationships. In the customary regression framework,

the goal is to minimize the residuals sum of squares. In Support Vector Regression (SVR),

the goal is to minimize a function of the residuals plus a L2-penalization on the regression

coe�cient:

S =
∑
i∈Sr

Vε(yi − f(xi)) +
λ

2
||β||2, (33)

where Vε is the so-called ε-insensitive error measure de�ned as Vε(x) = 0 if |x| < ε and

|x| − ε otherwise (Vapnik, 2000) for ε > 0; ε can be viewed as the allowed tolerance for

�tting; see Figure 1 in Smola and Schölkopf (2004). The optimization problem (33) may not

have solution and supplementary tolerances ξi, ξ
∗
i (called also "the slack variables") on the

individual �tted errors are considered (Smola and Schölkopf, 2004). There exist several ways

for incorporating weights in the optimization problem, leading to di�erent weighted support

vector regression solutions. We consider the method suggested by Lee et al. (2005) and Han

and Clemmensen (2014):

minimize
β

1

2
||β||2 + C

∑
i∈Sr

w̃i (ξi + ξ∗i ) (34)

and

subject to yi − β0 − xTi β 6 ε+ ξi,

β0 + xTi β − yi 6 ε+ ξ∗i .

ξi, ξ
∗
i > 0,

(35)
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where C > 0 is the tuning parameter that provides a trade-o� between the smoothness of

the �tted function and the deviation from the training data and w̃i = wi/
∑

j∈Sr
wj ∈ (0, 1)

denotes the normalized sampling weight associated with unit i. As a result, the w̃i's are all

smaller than one. As argued by Han and Clemmensen (2014), incorporating weights in the

objective function as in (34) has the e�ect of shrinking the estimators β̂j to di�erent extents.

The solution of (33) and (35) is given by β̂ =
∑

i∈Sr
(α̂i − α̂∗i )xi, which leads to

f̂(x) =
∑
i∈Sr

(α̂i − α̂∗i ) < xi,x > +β0, (36)

where < ·, · > is an inner product and α̂i > 0 and α̂∗i > 0 denote the Lagrange multipliers

verifying the quadratic programming problem:

min
αi,α∗i

ε
∑
i∈Sr

(αi + α∗i )−
∑
i∈Sr

yi(αi − α∗i ) +
1

2

∑
i,j∈Sr

(αi − α∗i )(αj − α∗j ) < xi,xj >

subject to 0 ≤ αi, α
∗
i ≤ Ci := C × w̃i,

∑
i∈Sr

(αi − α∗i ) = 0 and αiα
∗
i = 0. As a result,

only a subset of the solution values (α̂i − α̂∗i ) are nonzero and the associated data values

are called the support vectors. The solution β̂ is written as a linear combination of these

support vectors. Moreover, the prediction f̂(x) uses only the support vectors and the inner

products between x and xi without requiring the computation of β̂. This property is useful

for extending the method to handle nonlinear relationships.

We now consider the case of a nonlinear and unknown function f. We approximate f in

a basis of functions {φm}Mm=1 as follows:

f(x) =

M∑
m=1

βmφm(x) + β0

and β0 and β = (βm)Mm=1 minimize (34) and

subject to yi − β0 −
M∑
m=1

βmφm(xi) 6 ε+ ξi,

β0 +
M∑
m=1

βmφm(xi)− yi 6 ε+ ξ∗i .

ξi, ξ
∗
i > 0.

(37)
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A similar derivation as before leads to β̂ =
∑

i∈Sr
(α̂i − α̂∗i )φ(xi) for φ(xi) = (φm(xi))

M
m=1

and

f̂(x) =
∑
i∈Sr

(α̂i − α̂∗i )K(xi,x) + β0,

where K(xi,x) =< φ(xi), φ(x) >=
∑M

m=1 φm(xi)φm(x) is a positive de�nite kernel (Smola

and Schölkopf, 2004). The computation of f̂(x) involves φ(x) only through inner products

and using a kernel function makes the computation of f̂(x) possible without requiring φ(x).

All is needed is the knowledge of K. Using K, it is possible to solve the optimization problem

in a higher-dimensional space without having to compute any product in this space. Common

choices of K(·, ·) include the Gaussian kernel K(xi,xj) = exp
(
−||xi − xj ||2

)
and the polyno-

mial kernel K(xi,xj) =
(
1 + x>i xj

)q
, q = 2, 3, . . . . The imputed value for the missing yi is

given by

ŷi =
∑
j∈Sr

(
α̂j − α̂∗j

)
K(xj ,xi) + β̂0. (38)

A random version version of (38) is obtained by adding random residuals as in (10). The

reader is referred to Smola and Schölkopf (2004) for a discussion on how to estimate β0.

4 Simulation study: the case of population totals

We conducted an extensive simulation study to investigate the performance of the imputation

procedures described in Section 3 in terms of bias and e�ciency.

4.1 The setup

For each scenario, we repeated R = 5, 000 iterations of the following process:

(i) A �nite population of size N = 10, 000 was generated. The population consisted of a

survey variable Y and a set of predictors X1, . . . , Xp.

(ii) From the �nite population generated in Step (i), a sample, of size n, was selected

according to a given probability sampling design.

(iii) In each sample, nonresponse to item Y was generated according to a given nonresponse

mechanism.
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(iv) The missing values in each sample were imputed using several imputation procedures.

We now give a more in-depth discussion of each of the steps (i)-(iv).

We �rst generated �ve predictors X1, . . . , X5, according to the following distributions:

X1 followed a normal distribution, X1 ∼ N (0, 1) ; X2 followed a Beta distribution, X2 ∼

Beta (3, 1) ; X3 followed a Gamma distribution, X3 ∼ 2 × Gamma (3, 2) ; X4 followed a

Bernoulli distribution, X4 ∼ B (0.7) ; and X5 followed a multinomial distribution, X5 ∼

Mult (0.4, 0.3, 0.3) . The predictors X1-X3 were continuous, whereas the predictors X4 and

X5 were discrete. The predictors X1-X3 were standardized so as to have a zero mean and

a variance equal to one. Given the predictors X1-X5, we generated the continuous survey

variables Y1, . . . , Y8, according to the following models:

� Y1 = 2 + 2X1 +X2 + 2X3 +N (0, 1);

� Y2 = 2 + 2X1 +X2 + 2X3 + Pareto(1, 4);

� Y3 = 2 +X1 +X2
2 +X3 +N (0, 1);

� Y4 = 2 + 2X1 +X2 + 3X3X4 + 1.51(X5 = 1)− 21(X5 = 2) +N (0, 1);

� Y5 = 2 + 5X3
1 + 4X2

2 +X3X4 + 1.51(X5 = 1)− 21(X5 = 2) +N (0, 1);

� Y6 = 2 + (2X1 +X2 + 2X3)2 +N (0, 1) + Beta(3, 1);

� Y7 = 2 + (2X1 +X2 + 3X3X4 + 1.51(X5 = 1)− 21(X5 = 2))2 +N (0, 1);

� Y8 = 4 cos (X1) +N (0, 1);

and the binary survey variables as follows:

� Y9 = 1(S1 > 1/2), where

S1 = 0.1 + 0.79 exp {1 + 0.5 (0.75 + 2X1 + 2X2 + 2X3 −X4 −X3X4

+1.51(X5 = 1)− 21(X5 = 2))}−1 ;

� Y10 = 1(S2 > 1/2), where

S2 = 0.55×Q+ 0.02− 0.01X3
2
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with

Q = exp {1 + 0.4× (6.5 + 2X1 + 2X2 + 2X3 −X4 −X3X4

+1.51(X5 = 1)− 21(X5 = 2))}−1 . (39)

For the survey variables Y2 and Y6, note that we have generated errors for non-normal

distribution to assess the robustness of the BART procedure that assumes a Gaussian distri-

bution for the errors.

From each population, we selected samples, of (expected) size n = 1, 000, according to

two sampling designs: (a) simple random sampling without replacement and (b) Poisson

sampling with probability proportional to the values of the variable X5; i.e., πi = 1, 000 ×

(x5i/
∑

i∈U x5i) for all i ∈ U. Simple random sampling without replacement was used for

estimating the �nite population total of the continuous survey variables Y1-Y6 and Y8 and

the binary variables Y9 and Y10, whereas Poisson sampling was used for estimating the totals

of the survey variables Y4 and Y7.

In each sample, nonresponse to the survey variable Y`, ` = 1, . . . , 10, was generated

according to four nonresponse mechanisms. That is, the response indicators ri were generated

from a Bernoulli distribution with probability pgi, g = 1, . . . , 4, where

(NR1): p1i = 0.1 + 0.79 exp {1 + 0.5 (0.75 + 2xi1 + 2xi2

+2xi3 − xi4 − xi3xi4 + 1.51(xi5 = 1)− 21(xi5 = 2))}−1 ;

(NR2): p2i = 0.5;

(NR3): p3i = 0.55× qi + 0.02− 0.01x3
i2;

(NR4): p4i = 0.5× qi + 0.13− 0.1 (sin(xi1) + cos(xi2)) ;

where qi is the ith value of Q given by (39). In (NR1)-(NR4), the model parameters were set

so as to obtain a response rate of about 50% in each sample.

In each sample, the missing values were imputed according to eleven imputation proce-

dures described in section 3. Some of the imputation procedures required the speci�cation of

some parameters (e.g., regularization parameter, depth of a regression tree, choice of a kernel,

etc.). We have included several con�gurations to assess the impact of these parameters on

the performance of these procedures. Based on the di�erent con�gurations, we ended up with

twenty-seven imputation procedures. More speci�cally, we included the following procedures:
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Procedure 1: "LR" : Deterministic linear regression imputation; see Section 3.1.

Procedure 2: "MWCα" : Mean imputation within classes, where the number of units in each

class was set to α ∈ {50, 100, 250, 500}; see Section 3.2.

Procedure 3: "HDWCα" : Random hot-deck imputation within classes, where the number

of units in each class was set to α ∈ {50, 100, 250}; see Section 3.2.

Procedure 4: "KNN" : K-Nearest-Neighbours imputation with K = 1 and K = 5 nearest

neighbours and the euclidian distance and implemented with the R-package

caret; see Section 3.3.

Procedure 5: "AMSα" : Additive models based on cubic B-splines with α equidistant inte-

riors knots placed at the x-quantiles, where α ∈ {5, 10} and implemented with

the R-package mgcv; see Section 3.4.

Procedure 6: "CART" : Imputation through regression trees with the CART algorithm and

implemented with the R-package rpart; see Section 3.5.

Procedure 7: "RF1" : Imputation through random forest with B = 1000 trees, one obser-

vation per terminal node and 1 predictor considered for the search in each

split. "RF2": Random forest with B = 1000 trees, 5 observations per terminal

node and
√
p predictors considered for each split, where p is the number of

X-variables used in the imputation model, in our case p = 5. "RF3" : Ran-

dom forest with B = 1000 trees, 10 observations per terminal node and
√
p

predictors considered for each split. Simulations were implemented with the

R-package ranger; see Section 3.6.

Procedure 8: "XGB1": XGBoost algorithm with M = 50 trees each one with J = 3 �nal

splits and a learning rate of 0.1. "XGB2": XGBoost algorithm with M = 100

trees with J = 6 and a learning rate of 0.05. "XGB3": XGBoost algorithm

with M = 250 trees with J = 10 and a learning rate of 0.01. Simulations were

implemented with the R-package xgboost; see Section 3.7.1.

Procedure 9: "BART" : Imputation through Bayesian additive regression trees. Simulations

were implemented with the R-package bartMachine; see Section 3.7.2.
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Procedure 10: "CUBIST1": Cubist with one model. "CUBIST2" : Cubist with �ve models.

"CUBIST3" : Cubist with 5 models and unbiased estimation. Simulations were

implemented with the R-package Cubist; see Section 3.8.

Procedure 11: "SVR1": Support vector regression imputation with a Gaussian kernel and

the ν objective function. "SVR2": Support vector regression imputation

with a polynomial kernel of degree 3 and the ε-insensitive objective function.

"SVR3": Support vector regression imputation with a Gaussian kernel and the

ε-insensitive objective function. "SVR4": Support vector regression imputa-

tion with a linear kernel and the ε-insensitive objective function. Simulations

were implemented with the R-package e1071; see Section 3.9.

The imputation procedures used in our simulations were based on an imputation model

that included the predictors X1, . . . , X5, without any interaction terms. Except for random

hot-deck imputation (Procedure 3) and nearest-neighbour imputation (Procedure 4 with

K = 1), for the binary variables Y9 and Y10, note that we have generated zeroes and ones

from independent Bernoulli distributions with parameter ŷi, where ŷi denotes the predicted

value associated with unit i. Whenever ŷi < 0, we set it to ŷi = 0. Similarly, when ŷi > 1,

we set it to ŷi = 1.

As a measure of bias of the imputed estimator t̂imp given by (4), we computed the Monte

Carlo percent relative bias de�ned as

RBMC(t̂imp) = 100× 1

R

R∑
r=1

(t̂
(r)
imp − ty)
ty

, (40)

where t̂
(r)
imp denotes the imputed estimator t̂imp at the rth iteration, r = 1, . . . , 5, 000.

As a measure of e�ciency, we computed the relative of e�ciency, using the complete data

estimator t̂π given by (1), as the reference. That is,

REMC(t̂imp) = 100× MSEMC(t̂imp)

MSEMC(t̂π)
, (41)

where MSEMC(t̂imp) = R−1
∑R

r=1(t̂
(r)
imp − ty)2 and MSEMC(t̂π) is de�ned similarly.
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4.2 Simulation results

In Section 4.2.1, we discuss the simulation results pertaining to the continuous survey vari-

ables Y1, . . . , Y6 and Y8, with simple random sampling without replacement. The results for

Poisson sampling used in the case of Y4 and Y7 are discussed in Section 4.2.2. Finally, the

case of the binary variables Y9 and Y10, whose totals were estimated with simple random

sampling without replacement, is discussed in Section 4.2.3.

4.2.1 Continuous survey variables and simple random sampling without replace-

ment

For simple random sampling without replacement, for each of the twenty-seven imputation

procedures, we had seven survey variables and four nonresponse mechanisms, leading to

27× 4× 27 = 756 sets of simulation results. For ease of presentation, we present the results

in tabular and graphic forms. The displayed statistical analyses were obtained from 4×7 = 28

scenarios obtained by crossing all the nonresponse models and the survey variables.

For each imputation procedure, Table 1 and Table 2 display, respectively, some descriptive

statistics regarding the Monte Carlo absolute percent relative bias (absolute value of RB) and

the Monte Carlo relative e�ciency (RE) of t̂imp calculated across the twenty-eight scenarios.

The corresponding side-by-side boxplots obtained from the twenty-eight scenarios are given

in Figures 2 and 3. In Tables 1 and 2, the imputation procedures are ordered from the best

to the worst with respect to the median absolute percent RB (the median of the twenty-eight

values of absolute RB) and the median percent RE (the median of the twenty-eight values

of RE), respectively. Figure 4 shows the distribution of the imputed estimator for the best

ten imputation procedures in terms of RE. Finally, Table 3 displays the best �ve imputation

procedures for each Y -variable.

From Table 1 and Table 2, among the twenty-seven imputation procedures, the best

methods were: CUBIST, XGboost, AMS and BART. The performance of CUBIST3 was

especially impressive with a median RE of 115%, a value ofQ95 equal to 158% and a maximum

value of 211%. The methods XGboost, AMS and BART exhibited similar performances with

values of median RE ranging from 122% and 129%. However, for some scenarios, these

methods did not perform well. For instance, the procedure XGB2 showed a value of max RE

of about 438%, whereas it was equal to 1728% for AM5. Results suggest that additive models
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with 5 interiors knots perform better than those with 10 interior knots. The next group of

imputation procedures includes SVR and RF, with values of median RE ranging from 141%

and 151%. Again, for some scenarios, both methods displayed poor performances with values

of max RE ranging from 322% to 1138%. The procedure CART was less e�cient than RF2

and RF3. The procedure 1-NN did relatively well with a median RE equal to 194%. On

the other hand, the procedure 5-NN was rather ine�cient with a median RE of 229%, which

suggests that KNN with survey data works well only with a small number of neighbour.

Turning to mean and random hot-deck imputation within classes, the score method was

outperformed by the aforementioned procedures. Among the di�erent versions of MCW and

HDWC, the procedure MWC50 (which corresponds to 20 classes) led to the best results. This

is consistent with the results of Haziza and Beaumont (2007). As expected, the procedure

HDWC50 was less e�cient than MWC50 as random hot-deck imputation su�ers from the

imputation variance, arising from the random selection of donors within classes. Finally, for

some scenarios, it is worth noting that some of the procedures were better than the complete

data estimator. For instance, for SVR4, the minimum value of RE and the value of Q0.05

were respectively equal to 82% and 89%, respectively (see Table 2). Finally, the results in

Table 5 suggest that the best methods were CUBIST, XGBoost, additive models and BART,

which is consistent with the discussion above.

For each of the best ten imputation procedures displayed Table 2, Figure 5 displays the

distribution of t̂imp for each nonresponse mechanism. Figure 5 suggests that the nonresponse

mechanism may have a considerable impact on the behavior of the imputed estimator. For

instance, in our experiments, we note that most of the imputation procedures performed

poorly in the case of the nonresponse mechanism (NR1). Notable exceptions were AMS5,

BART and Cubist3. In particular, Cubist3 seemed to be insensitive to the nonresponse

mechanism, which is a desirable feature.
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Ranking Model Min Q0.05 Q0.25 Q0.5 Q0.75 Q0.95 Max

1 CUBIST3 0.0 0.0 0.0 0.1 0.9 2.8 3.5
2 AMS5 0.0 0.0 0.0 0.1 1.8 7.7 13.8
3 AMS10 0.0 0.0 0.0 0.1 1.8 7.6 13.5
4 CUBIST1 0.0 0.0 0.1 0.5 3.4 7.5 7.5
5 XGB1 0.0 0.0 0.2 0.6 1.8 4.2 5.4
6 MWC50 0.0 0.0 0.1 0.6 2.7 8.3 11.7
7 HDWC50 0.0 0.0 0.1 0.6 2.7 8.3 11.8
8 CUBIST2 0.0 0.0 0.1 0.6 3.6 7.5 7.5
9 BART 0.0 0.1 0.4 0.8 2.2 4.0 4.6
10 XGB2 0.1 0.2 0.4 0.9 2.8 5.4 10.1
11 LR 0.0 0.0 0.1 0.9 3.8 12.8 20.4
12 SVR3 0.1 0.1 0.4 1.0 3.2 7.1 13.5
13 MWC100 0.0 0.0 0.3 1.0 3.6 10.1 12.9
14 HDWC100 0.0 0.0 0.3 1.0 3.6 10.1 12.9
15 SVR1 0.0 0.1 0.4 1.2 3.4 7.4 14.0
16 RF3 0.0 0.2 0.5 1.3 3.8 16.6 20.7
17 RF2 0.0 0.1 0.4 1.4 4 15.6 18.6
18 MWC250 0.0 0.0 0.7 1.7 4.9 14.6 18.1
19 HDWC250 0.0 0.0 0.6 1.7 4.9 14.6 18.1
20 RF1 0.1 0.2 0.9 1.7 7.7 32.1 39.5
21 NN 0.0 0.1 1.0 2.1 5.2 8.0 9.4
22 MWC500 0.0 0.0 0.7 2.2 7.2 25.5 30.6
23 CART 0.0 0.1 0.1 2.4 4.9 17.4 28.0
24 X5NN 0.0 0.2 1.5 3 7.3 12.0 13.7
25 SVR2 0.1 0.2 1.0 3.7 11.7 19.9 27.0
26 XGB3 0.6 1.5 3.1 4.3 5.0 9.5 10.3
27 SVR4 0.0 0.0 2.4 5.3 7.8 22.2 33.3

Table 1: Monte Carlo percent absolute relative bias of the imputed estimator: Descriptive
statistics over all the scenarios
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Ranking Model Min Q0.05 Q0.25 Q0.5 Q0.75 Q0.95 Max

1 CUBIST3 102 102 111 115 125 158 211
2 BART 113 113 116 122 131 154 204
3 AMS5 100 101 111 123 147 378 1728
4 AMS10 100 101 112 123 167 1195 1749
5 XGB1 101 103 115 129 153 203 288
6 CUBIST2 102 103 119 133 187 360 365
7 XGB2 102 102 117 133 166 316 438
8 CUBIST1 103 105 120 136 182 360 365
9 SVR1 94 103 122 141 180 284 322
10 SVR3 95 106 122 143 181 269 299
11 RF3 115 118 131 149 192 919 1138
12 RF2 113 118 130 151 202 824 1025
13 CART 125 134 143 168 248 1498 2683
14 LR 110 111 114 169 315 823 3494
15 MWC50 113 114 122 171 205 308 583
16 HDWC50 120 120 128 189 240 332 600
17 MWC100 116 116 136 191 217 296 670
18 NN 101 111 125 194 378 486 526
19 XGB3 92 100 128 194 663 1082 1104
20 HDWC100 123 125 142 213 246 322 686
21 RF1 136 137 149 223 375 3656 3916
22 MWC250 128 130 159 229 279 383 1162
23 5NN 94 108 123 229 659 775 855
24 SVR2 97 102 151 242 1616 3849 6355
25 SVR4 82 89 117 258 1439 4301 8675
26 HDWC250 141 143 185 265 325 411 1184
27 MWC500 151 155 202 269 336 1783 3021

Table 2: Monte Carlo percent absolute relative e�ciency of the imputed estimator: Descrip-
tive statistics over all the scenarios
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Figure 4: Monte Carlo percent relative e�ciency across the scenarios: the best 10 procedures.

Figure 5: The e�ects of the nonresponse mechanism on the performance of the 10 best
imputation procedures.

4.2.2 Continuous survey variables with Poisson sampling

Recall that Poisson sampling was used for estimating the population total of the survey

variables Y4 and Y7. This led to 2 × 4 × 27 = 216 sets of results. Due to the small number

of scenarios (2× 4 = 8) for each of the survey variables Y4 and Y7, Tables 4 and 5 show the

minimum, the median and the maximum Monte Carlo percent absolute RB and Monte Carlo

37



Ranking Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

1 LR CUBIST3 AMS5 BART XGB3 CUBIST3 CUBIST3 CUBIST3

2 CUBIST3 LR AMS10 CUBIST3 AMS5 BART AMS5 AMS5

3 MW50 AMS5 BART CUBIST1 AMS10 SVR3 AMS10 AMS10

4 AMS5 MWC50 CUBIST3 CUBIST2 XGB1 SVR1 MWC50 XGB1

5 AMS10 AMS10 CUBIST2 XGB1 XGB2 XGB1 BART BART

Table 3: Best 5 imputation procedures for each survey variable.

percent RE only. The size variable X5 used to obtain the �rst-order inclusion probabilities

was included as a predictor in the imputation models. The results in Tables 4 and 5 were

consistent with those obtained for simple random sampling without replacement. Again, the

best methods were CUBIST3, BART and XGB1 in terms of either bias or e�ciency.

Ranking Model Min Q0.5 Max

1 BART 0.1 0.9 3.0
2 CUBIST3 0.0 1 6.5
3 XGB1 0.0 2.4 5.2
4 CUBIST1 0.0 3.4 10.9
5 RF2 0.3 3.5 15.8
6 RF3 0.5 3.5 16.8
7 XGB2 0.4 3.9 8.6
8 AMS5 0.2 4.3 11.1
9 AMS10 0.2 4.3 10.7
10 CUBIST2 0.0 4.3 12.6
11 RF1 0.8 4.4 31.4
12 SVR3 0.1 4.4 6.7
13 LR 0.2 4.9 16.8
14 SVR1 0.1 4.9 7.1
15 MWC500 0.0 5.0 26.1
16 NN 0.0 5.0 7.3
17 MWC250 0.0 5.1 14.7
18 HDWC50 0.8 5.1 9.9
19 MWC50 0.0 5.2 9.9
20 MWC100 0.0 5.2 10.1
21 HDWC100 0.1 5.2 10.0
22 HDWC250 0.0 5.2 14.7
23 CART 0.2 5.6 24.6
24 5NN 1.3 7.1 11.7
25 XGB3 2.5 8.8 11.1
26 SVR2 1.0 11.7 22.6
27 SVR4 0.2 15.4 27.5

Table 4: Monte Carlo percent absolute relative bias of the imputed estimator: Descriptive
statistics for Poisson sampling.

38



Ranking Model Min Q0.5 Max

1 BART 106 117 139
2 CUBIST3 111 118 239
3 XGB1 108 133 207
4 RF2 114 144 565
5 RF3 114 145 621
6 XGB2 110 156 246
7 SVR3 109 165 198
8 AMS5 124 168 486
9 SVR1 109 175 209
10 CUBIST1 114 175 469
11 NN 117 178 234
12 MWC50 125 188 396
13 MWC100 125 188 363
14 RF1 122 188 1868
15 LR 123 189 923
16 MWC250 128 190 525
17 CUBIST2 111 193 548
18 CART 133 198 1224
19 MWC500 133 198 1346
20 HDWC50 135 210 409
21 HDWC100 139 213 381
22 HDWC250 145 217 539
23 5NN 120 241 370
24 XGB3 116 272 441
25 AMS10 130 313 592
26 SVR2 142 493 1619
27 SVR4 141 769 2119

Table 5: Monte Carlo percent relative e�ciency of the imputed estimator: Descriptive statis-
tics for Poisson sampling.

4.2.3 Binary survey variables

In this section, we present the results pertaining to the binary variables Y9 and Y10. Again,

for each imputation procedure, we obtained 2 × 4 = 8 sets of results. Tables 6 and 7 show

the minimum, the median and the maximum Monte Carlo percent absolute RB and Monte

Carlo percent RE, respectively.

The ranking for binary survey variables was slightly di�erent from that obtained for the

continuous survey variables. Nearest-neighbor (NN) imputation procedure was the best in

terms of bias and e�ciency. Recall that NN imputation did not rank among the best pro-

cedures for the continuous variables. NN imputation was followed by CUBIST, XGBOOST

and BART.
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Ranking Model Min Q0.5 Max

1 NN 136 144 428
2 XGB3 153 165 860
3 XGB2 156 167 827
4 CUBIST3 156 167 841
5 XGB1 156 171 932
6 BART 156 173 1052
7 5NN 152 174 1191
8 CUBIST2 163 179 873
9 CUBIST1 169 191 904
10 RF2 158 192 1572
11 RF3 162 198 1769
12 AMS5 169 219 2453
13 MWC100 160 221 1120
14 MWC50 159 222 1067
15 SVR1 171 222 3196
16 AMS10 165 223 2472
17 MWC50 159 223 1061
8 M100 159 225 1116
19 CART 176 229 1882
20 LR 164 230 2707
21 MWC250 172 244 1460
22 MWC250 173 246 1471
23 SVR3 191 280 2899
24 RF1 190 305 4666
25 M500 186 365 4977
26 SVR4 219 409 26429
27 SVR2 413 1839 17279

Table 6: Monte Carlo percent relative e�ciency of the imputed estimator: Descriptive statis-
tics for the binary survey variables.

4.3 High-dimensional setting

In this section, we investigate the performance of a subset of the imputation procedures

considered in Section 4.1 in a high-dimensional setting. To that end, we used data from

the Irish Commission for Energy Regulation (CER) Smart Metering Project conducted in

2009-2010 (CER, 2011) that focused on energy consumption and energy regulation1. About

6000 smart meters were installed in Irish residences and businesses. The customer's electrical

consumption was collected every half an hour over a period of about two years.

We considered a subset of the original data set. We ended up with a population of

N = 6291 smart meters (households and businesses) for a period of 14 consecutive days.

For each population unit i (household or business), we had 2 × 7 × 48 = 672 measurements

denoted by Xj = X(tj), j = 1, . . . 672. Each of these 672 measurements represents the

1The data are available on request at: https://www.ucd.ie/issda/data/commissionforenergyregulationcer/.
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Ranking Model Min Q0.5 Max

1 NN 0.0 0.5 3.6
2 CUBIST3 0.02 0.7 6.7
3 XGB3 0.03 0.8 7.7
4 BART 0.1 0.8 8.8
5 XGB1 0.14 0.9 7.9
6 XGB2 0.0 0.9 6.9
7 5NN 0.0 1.0 7.3
8 CUBIST2 0.2 1.0 7.0
9 CUBIST1 0.0 1.1 6.8
10 RF2 0.12 1.5 10.3
11 RF3 0.13 1.6 11.0
12 AMS5 0.04 1.6 11.9
13 AMS10 0.1 1.6 11.9
14 SVR1 0.3 1.7 12.0
15 LR 0.19 1.8 12.3
16 CART 0.18 1.8 11.4
17 MWC50 0.0 1.8 7.5
18 MWC100 0.0 1.8 7.7
19 HDWC50 0.03 1.8 7.5
20 HDWC100 0.01 1.8 7.7
21 MWC250 0.0 2.0 9.4
22 HDWC250 0.0 2.0 9.4
23 SVR3 0.43 2.3 11.5
24 RF1 0.08 2.7 19.0
25 SVR4 0.17 3.0 36.5
26 MWC500 0.0 3.2 16.4
27 SVR2 1.9 9.5 33.9

Table 7: Monte Carlo percent absolute relative bias of the imputed estimator: Descriptive
statistics for the binary survey variables.

electricity consumption (in kW) at instant tj . We denote by xij the value of Xj recorded

by the smart meter i for i = 1, . . . , N at instant tj . It should be noted that these variables

were highly correlated among themselves with a condition number of the matrix N−1XTX

computed using all the data, of about 60.000.

We created four survey variables based on a subset of the auxiliary variables X1, . . . , X672:

Y1 = 400 + 2X1 +X2 + 2X3 +N (0, 1500);

Y2 = 400 +X1X2 + 2X3 +N (0, 1500);

Y3 = 500 + 2X4 + 4001{X5>156} − 4001 (X5 6 156) + 10001 (X2 > 190)

+ 3001 (X5 > 200) +N (0, 1500);

Y4 = 1 + cos(2X1 +X2 + 2X3)2 + ε1,
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where ε1 ∼ E(2) and these error terms were centered so as to have a mean equal to zero. We

were interested in estimating the population total of the survey variables Y1-Y4. Again, the

simulation was based of R = 5, 000 iterations of the process described in Section 4. Samples

of size n = 1000 were selected according to simple random sampling without replacement.

The missing values to the survey variables Y1-Y4 were generated according to

pi = 0.1 + 0.89× sigmoid {−0.83 + 0.001× (2xi1 + 2xi2 − 2.5xi3)} ,

leading to an average response rate of about 50%.

Three high and very high dimensional settings were considered: in the �rst setting, the

imputation models used the �rst 15 auxiliary variables X1, ..., X15, in the data set. In the

second and third settings, the imputation models were based on the �rst 100 and 300 auxiliary

variables X1, ..., X100, and X1, ..., X300, respectively.

To impute the missing values, we con�ned to a subset of the imputation procedures con-

sidered in Section 4.1: additive models, BART, CUBIST, XGBoost, random forests, nearest-

neighbour imputation and support vector regression. Linear regression imputation and mean

imputation within 20 classes were also considered. It is well known that the quality of pre-

dictions based on linear models tend to deteriorate substantially in the presence of a very

large number of auxiliary variables. To cope with this issue, we also considered principal

components analysis as a reduction-dimension method; see Cardot et al. (2017).

Table 8 shows the Monte Carlo percent relative bias (RB) and relative e�ciency (RE)

for p = 15 predictors. Table 9 shows the results for p = 100 and p = 300 predictors. For

each scenario, the best imputation procedures are highlighted in bold. Note that the relative

e�ciency is now computed with respect to the mean square error of the imputed estimator

based on the true imputation model. The additive models were considered in the �rst setting

only (p = 15 variables) because their performance deteriorated rapidly as the number p

of variables increased. For p = 100 and p = 300 the back�tting algorithm did not reach

convergence in most scenarios.

From Tables 8 and 9, we note that CUBIST and XGBoost were the best method in the

vast majority of the scenarios. These methods were followed by BART and random forests.

As expected, additive models performed poorly, which illustrates the curse of dimensionality.

It is worth pointing out that random forests performed better in the high-dimensional setting

than they did in the low-dimension setting considered in section 4.1. Finally, the strategy
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based on principal components analysis did relatively well in most scenarios.

Variable Criterion LR MWC50 RF2 XGB1 NN SVR3 AMS5 CB3 PCR1 PCR2 PCR3 BART

Y1
RE 100 117 110 103 111 124 101 100 160 113 100 101

RB -0,18 1,7 1,7 0 -0,1 2,6 -0,0 -0,1 4,0 0,6 -0,5 0,3

Y2
RE 184 176 103 100 100 295 7041 101 159 213 207 106
RB -44,3 15,7 3,8 0 0,7 19,2 9,5 -0,0 -47,0 -53,1 -48,5 2,1

Y3
RE 190 135 102 108 128 134 403 109 188 178 210 105

RB 4,6 2,1 0,1 -0,2 0,1 2,08 -0,0 1,2 4,6 4,3 5,2 0,0

Y4
RE 125 126 143 147 188 195 130 118 119 121 123 131
RB -0,0 -0,0 0,5 0,2 -0,1 -1,3 0,0 -0,0 -0,11 -0,1 -0,0 0,0

Table 8: Relative biais (RB) and relative e�ciency (RE) of imputation procedures with
p = 15 auxiliary variables.

Variable Dim Criterion LR MWC50 RF2 XGB1 NN SVR3 CB3 PCR1 PCR2 PCR3 BART

Y1 p=100
RE 102 122 149 103 216 187 100 269 226 151 105

RB 0,14 2,1 4,2 0,3 6,2 5,1 0 7,8 6,6 4,0 0,6

Y2 p=100
RE 115 287 109 100 100 340 100 100 108 140 127
RB -23,8 34,3 7,5 0,1 3,3 26,1 -0,0 -31,0 -28,9 -32,5 5,8

Y3 p=100
RE 158 185 107 107 354 162 108 236 224 196 129
RB 3,2 3,9 1,1 -0,0 7,0 3,4 0,9 5,9 5,5 4,8 7,7

Y4 p=100
RE 140 141 151 146 243 217 122 120 120 121 135
RB 0,0 0,1 0,7 0,28 0,4 -1,5 -0,0 -0,0 -0,1 -0,1 -0,0

Y1 p=300
RE 120 215 190 103 286 237 100 290 262 189 110

RB -0,2 1 5,7 0,6 7,05 6,7 0,06 8,3 7,7 5,7 1,3

Y2 p=300
RE 102 1106 112 100 100 405 100 91 85 109 243
RB -6,3 89,1 9,5 0,1 4,01 35, -0,0 -28,4 -25,3 -26,9 4,6

Y3 p=300
RE 197 378 118 107 630 180 108 350 245 224 242
RB 1,0 6,7 2,0 0,0 9,1 4,1 0,8 6,2 6,1 5,6 6,4

Y4 p=300
RE 276 584 155 143 443 214 124 120 120 121 131
RB 0,1 2,4 0,7 0,3 0,6 -1,5 0,06 -0,0 -0,1 -0,1 -0,0

Table 9: Relative biais (RB) and relative e�ciency (RE) of imputation procedures with
p = 100 and respectively, p = 300 auxiliary variables.

5 Simulation study: the case of population quantiles

In this section, we turn our attention to population quantiles. Except for nearest-neighbour

imputation, we con�ned to the random versions of the imputation procedures described in

Section 3. The target parameters were the quantiles of order γ1 = 0.25, γ2 = 0.5 and γ3 = 0.75

that correspond to the �rst quartile, the median and the third quartile, respectively. We

considered a subset of the scenarios described in Section 4.1. First, we con�ned to the case of
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the survey variables Y3 and Y6 and the nonresponse mechanisms (NR1) and (NR3) described

in Section 4.1, leading to 2×2 = 4 scenarios. Also, samples were selected according to simple

random sampling without replacement only. In each sample, we computed the imputed

estimator Q̂γ,imp given by (5) for γ1 = 0.25, γ2 = 0.5 and γ3 = 0.75. As in Section 4, we

computed the Monte Carlo percent relative bias of Q̂γ,imp and the relative e�ciency, given

respectively by (40) and (41) with t̂imp replaced with Q̂γ,imp, t̂π replaced with Q̂γ and ty

replaced with Qγ .

The results are presented in Figures 6-8. In each �gure, the x-axis corresponds to the

median of the Monte Carlo percent relative bias of Q̂γ,imp computed across the 4 scenarios,

whereas the y-axis corresponds to the median of the Monte Carlo relative e�ciency. For

the purpose of clarity, we have excluded from Figures 6-8 any imputation procedure whose

median of the Monte Carlo percent relative bias lied outside the interval [−20; 20] or whose

median of the Monte Carlo relative e�ciency was above 500.

From Figures 6-8, Cubist displayed a very good performance in terms of bias and e�ciency

for the three quantiles. The procedure XGBoost led to good results for Q0.25 and Q0.75 but

performed poorly for Q0.5. Similarly, BART performed very well for both Q0.5 and Q0.75 but

exhibited a poor performance for Q0.25. Support vector machine (SVR3) did relatively well

for both Q0.5 and Q0.75 but was outperformed by Cubist and XGBoost for Q0.25. Again,

the Cubist algorithm seemed to be insensitive to the target parameter, the model that has

generated the Y -variable and the nonresponse mechanism, at least in our experiments.

6 Final remarks

In this paper, we have conducted an extensive simulation study to compare several non-

parametric and machine learning imputation procedures in terms of bias and e�ciency. The

imputation procedures were evaluated in the case of �nite population totals of continuous

and binary variables and for population quantiles under both simple random sampling with-

out replacement and proportional-to-size Poisson sampling. The Cubist algorithm, BART

and XGBoost performed very well in a wide variety of settings. In general, these methods

seem to be highly robust to model misspeci�cation and seem to have the ability to capture

nonlinear trends in the data. Additive models based on B-splines performed well in the case

of population totals when the number of explanatory variables was small but broke down
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Figure 6: Median performances of the best imputed estimators for the estimation of Q0.25.

for large values of p. Finally, random forests performed relatively well in a high-dimensional

setting. In practice, the choice of an imputation procedure is not clear-cut and depends

on the data at hand. If one is reasonably con�dent about the correct speci�cation of the

�rst moment of the imputation model (that includes the correct speci�cation of the func-

tional form and the correct speci�cation of the vector of explanatory variables), parametric

imputation procedures are expected to do well in terms of bias and e�ciency. In addition,

parametric imputation is simpler to understand and the results are easier to interpret, in

general. In the case of complex/nonlinear relationships and/or in a high-dimensional setting,

our empirical investigations suggest that machine learning procedures outperform traditional

imputation procedures as they tend to be robust against model misspeci�cation. However,

these procedures require the speci�cation of some regularization parameters. For instance,

for XGBoost, one must specify the learning rate, the maximal depth and the coe�cient of

penalization. In support vector regression, the cost function and the kernel function must be
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Figure 7: Median performances of the best imputed estimators for the estimation of Q0.5.

selected, among others. In practice, the value for some of these parameters are determined

through a cross-validation procedure. To keep the processing time at a reasonable level, all

the regularization parameters were predetermined in our experiments. Overall, it seems that

Cubist is an excellent choice as it performed well in all the scenarios, unlike its main competi-

tors (e.g., XGBoost, BART, random forest, etc.) whose performance varied from one scenario

to another. From a computational point of view, most procedures were e�cient. One notable

exception is BART that proved to be highly computer intensive with an average processing

time approximately twenty times larger than what was required for the other procedures.

Drawing inferences from survey data requires a variance estimate. It is well known that

imputed values should not be treated as observed values. Otherwise, the resulting variance

estimates tend to be much smaller, on average, than the true variance, especially if the non-

response rates are appreciable. In the last three decades, a number of variance estimation

procedures have been proposed for obtaining variance estimates that account for sampling,
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Figure 8: Median performances of the best imputed estimators for the estimation of Q0.75.

nonresponse and imputation. The reader is referred to Haziza and Vallée (2020) for a com-

prehensive overview of variance estimation procedures in the presence of singly imputed data

sets. Estimating the variance of imputed estimators obtained through machine learning pro-

cedures is challenging and requires further research. If the sampling fraction is negligible,

one can recourse to the bootstrap procedure of Shao and Sitter (1996) that consists of se-

lecting bootstrap samples according to a complete data bootstrap procedure and reimputing

the missing values within each bootstrap sample using the same imputation method that was

used on the original data. If a machine learning procedure is used to impute the missing data,

the Shao-Sitter procedure may be highly computer intensive. When the sampling fraction is

not negligible, the problem of bootstrap variance estimation is more intricate (Chen et al.,

2019). To make the variance estimation process simpler for survey practitioners, it would be

desirable to derive a "universal" variance estimator based on Taylor expansion procedures
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that could be applicable to a wide class of machine learning imputation procedures, at least

in the case of negligible sampling fractions. This is currently under investigation.

Investigating the performance of deep learning methods in the context of imputation for

missing survey data would constitute a promising direction for future research. There exist

a wide class of deep learning procedures based on relatively sophisticated algorithms that

proved to be extremely e�cient in the context of unstructured data such as signal process-

ing or text analysis. However, for deep learning procedures to "shine" in terms of e�ciency

typically requires a huge volume of unstructured data, which is seldom the case in surveys.

In practice, most data sets in surveys consist of structured data and contains, at most, a few

millions observations and a few hundred survey variables. As noted by Choley (2018):

�(...) gradient boosting (such as XGBoost) is used for problems where structure data is avail-

able, whereas deep learning is used for perceptual problems such as image classi�cation�.

We believe that the class of imputation procedures considered in this article, that includes

bagging and boosting among others, o�ers a number of very good options that may be ap-

plicable to virtually all the surveys conducted by NSOs.
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