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Abstract

Item nonresponse in surveys is usually handled through some form of imputation.

In recent years, imputation through machine learning procedures has attracted a lot of

attention in national statistical offices. However, little is known about the theoretical

properties of the resulting point estimators in a survey setting. In this paper, we study

regression trees and random forests that provide flexible tools for obtaining imputed

values. In a high-dimensional framework allowing the number of predictors to diverge, we

lay out a set of conditions for establishing the mean square consistency of regression trees

and random forests imputed estimators of a finite population mean. We propose a novel

variance estimator based on a K-fold cross-validation procedure. The proposed point and

variance estimation are assessed through a simulation study in terms of bias, efficiency,

and coverage rate of normal-based confidence intervals. Finally, the choice of hyper-

parameters involved in random forest algorithms is investigated through theoretical and

empirical work.
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1 Introduction

Since the seminal paper of Breiman (2001), random forests have been used in a variety of ap-

plications, including medicine (Fraiwan et al., 2012), time series analysis (Kane et al., 2014),

agriculture (Grimm et al., 2008), missing data (Stekhoven and Buhlmann, 2011), genomics

(Qi, 2012) and pattern recognition (Rogez et al., 2008), among others. Random forests con-

stitute a class of ensemble models based on a large collection of B trees. Predictions through

random forests are obtained by averaging the predictions obtained from each of the B trees

of a forest.

Several empirical studies have shown that random forests compare favorably to other

nonparametric methods (Hamza and Larocque, 2005; Díaz-Uriarte and de Andrés, 2006;

Dagdoug et al., 2023a). Moreover, unlike several nonparametric statistical procedures (e.g.,

kernel regression, k-nearest neighbors, splines), random forests perform relatively well in

high-dimensional and sparse settings; see, e.g., (Biau, 2012; Scornet et al., 2015; Klusowski

and Tian, 2024).

Establishing the theoretical properties of random forests is challenging. In a non sur-

vey sampling setup, some important theoretical developments have been made by Scornet

et al. (2015), who studied the mean square consistency of random forest predictors using

results from Nobel (1996), assuming a fixed number of predictors. More recently, new high-

dimensional results for random forests have been obtained, e.g., Klusowski and Tian (2024);

Chi et al. (2022). Random forests have also been studied through the theory of U -statistics,

e.g., Mentch and Hooker (2016); Zhou et al. (2019); Xu et al. (2024).

In finite population sampling, regression trees and random forests have also been applied

in a variety of setups: (i) Model-assisted estimation (Tipton et al., 2013; De Moliner and

Goga, 2018; McConville and Toth, 2019; Dagdoug et al., 2023b); (ii) Small area estimation

(Krennmair and Schmid, 2022; Michal et al., 2023); (iii) The treatment of unit nonresponse

(Phipps and Toth, 2012; Earp et al., 2018; Lohr et al., 2015); (iv) Design-based prediction

(Toth and Eltinge, 2011; Nalenz et al., 2024).

This paper aims to provide a theoretical investigation of the properties of imputed es-

timators in surveys based on regression trees and random forests. The problem of missing

data in surveys is ubiquitous. Estimators of population means based on complete cases

tend to exhibit significant biases when the proportion of missing data is appreciable and
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the behavior of the responding units differs from that of the nonresponding units. In this

paper, we consider the problem of item nonresponse, a term used to describe the absence

of information on some, but not all, survey variables for a sample unit. The missing values

are imputed using a plausible value constructed based on auxiliary variables available for

respondents and nonrespondents. Imputation procedures share a common objective: reduce

the potential nonresponse bias to the best possible extent. Every imputation procedure re-

lies on some implicit or explicit assumptions about the distribution of the survey variable

requiring imputation. This set of assumptions is called an imputation model. The reader

is referred to Haziza (2009) and Chen and Haziza (2019) for comprehensive discussions of

imputation procedures in survey sampling. Tree-based methods such as random forests may

prove useful for obtaining a set of imputed values. Because they are nonparametric, they

tend to be robust against model misspecification. Also, with the emergence of large data sets

in National Statistical Offices (NSO), random forests have attracted much attention in recent

years and they are currently being scrutinized as an alternative to traditional imputation

procedures. Recently, Dagdoug et al. (2023a) conducted an extensive simulation study to

assess the performance of several machine-learning imputation procedures in terms of bias

and efficiency in a wide variety of settings, including tree-based methods such as regression

trees and random forests (Breiman, 2001), XGBoost (Chen and Guestrin, 2016), Bayesian

additive regression trees (Chipman et al., 2010) and Cubist (Quinlan, 1993)). The results of

Dagdoug et al. (2023a) confirm the good performance of random forests.

Variance estimation is an important issue, as NSOs publish point estimates as well as

corresponding estimated coefficients of variation, defined as the ratio of the estimated stan-

dard error of the estimate to the point estimate. Treating imputed values as observed values

and applying a complete data variance estimation procedure will typically result in serious

underestimation of the true variance of the imputed estimators. The resulting estimated

coefficients of variation will thus be too small and the confidence intervals too narrow. As a

result, inferences may be misleading. This has led researchers to develop a variety of vari-

ance estimators that account for sampling and nonresponse; see Haziza and Vallée (2020)

for a comprehensive overview of approaches for estimating the variance of point estimators

based on observed and imputed data. Because imputation procedures based on machine

learning procedures may suffer from the problem of overfitting, applying customary variance

estimators based on a first-order Taylor expansion may lead to appreciable underestimation
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of the variance of point estimators. With complete data, this issue has been discussed by

Opsomer and Miller (2005) and Dagdoug et al. (2023b) in the case of model-assisted esti-

mation based on local polynomials and random forests, respectively. In a model-assisted

framework, Dagdoug et al. (2023b) suggested a novel variance estimator based on a K-fold

cross-validation procedure that prevents overfitting. We extend this K-fold procedure to

estimate the variance of imputed estimators based on regression trees and random forests.

The proposed variance estimator prevents from overfitting and is shown to perform well in

a wide variety of settings.

The outline of the article is as follows. In Section 2, we define the framework and

introduce the notation. In Section 3, we present the regression trees based on the CART

algorithm (Breiman et al., 1984) and two random forest algorithms: the uniform random

forest algorithm (Biau et al., 2008), and the algorithm of Breiman (Breiman, 2001). In

Section 4, we establish some asymptotic properties of imputed estimators based on regression

trees and random forests. We show that these imputed estimators are mean square consistent,

even in a high-dimensional setting. In Section 5, using the reverse approach of Shao and

Steel (1999), we describe two variance estimators: the first is obtained through a first-order

Taylor expansion and is based on sample residuals, whereas the second variance estimator

relies on residuals obtained by a K-fold cross-validation procedure. In Section 6, we present

the results of a simulation study evaluating the performances of the proposed point and

variance estimators in terms of bias, efficiency, and coverage rate of normal-based confidence

intervals. The choice of some important hyper-parameters is discussed in Section 8. Finally,

we make some concluding remarks in Section 8. Additional simulation studies as well as all

proofs and further technical details are provided in the Appendix.

2 The setup

Consider a finite population U = {1, 2, ..., N} of known size N . We are interested in esti-

mating the finite population mean

µ := 1
N

∑
k∈U

yk,
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of a survey variable Y , where yk denotes the y-value for the k-th unit, k ∈ U . We select a

sample S, of size n, according to a sampling design P with first-order inclusion probabilities

{πk}k∈U and second-order inclusion probabilities {πkℓ}k ̸=ℓ∈U defined as πk := P(k ∈ S) and

πkℓ := P(k, ℓ ∈ S) for all k, ℓ ∈ U . The sample S is completely characterized by the vector

of sample selection indicators I = (I1, . . . , Ik, . . . , IN )⊤, where Ik := 1 if k ∈ S and Ik := 0,

otherwise.

In the ideal case of complete response, provided that πk > 0 for all k ∈ U , the Horvitz-

Thompson estimator of µ defined by

µ̂π := 1
N

∑
k∈S

yk

πk
. (1)

is design-unbiased. In practice, the Y variable may be prone to missingness. Let r :=

(r1, . . . , rk, . . . , rN )⊤ denote the vector of response indicators such that rk := 1 if yk is

observed, and rk := 0 otherwise. Let Sr := {k ∈ S ; rk = 1} be the set of respondents to

item Y , of size nr, and Sm := {k ∈ S ; rk = 0} be the set of nonrespondents, of size nm,

such that Sr ∪ Sm = S and nr + nm = n. Let xk := (xk1, . . . , xkp)⊤ be the p-vector of

measurements associated with p auxiliary variables X1, . . . , Xp recorded for all k ∈ S, and

let X := (x⊤
k )k∈U denote the corresponding population matrix. The observed data are given

by

Dimp :=
{

(xk, yk) ; k ∈ Sr

}⋃{
xk ; k ∈ Sm

}
.

In this article, we restrict our attention to non-informative designs; see e.g., Pfeffermann

and Sverchkov (2009). Assuming the design variables are available at the imputation stage,

non-informativeness can be achieved by incorporating into the imputation model the sub-

set of design variables associated with the variable Y requiring imputation. If the design

information is unavailable at the imputation stage, the sampling weight can be included

in the imputation model as a predictor; see Berg et al. (2016) for a discussion. The vec-

tors
(
rk, yk,x⊤

k

)
k∈U

are assumed to be independent and identically distributed (i.i.d.). We

further assume that the nonresponse model satisfies: (i) The positivity assumption, i.e.,

P (rk = 1|xk) > 0, almost surely; (ii) The Missing At Random (MAR) assumption (Rubin,

1976), i.e., P(rk = 1| yk,xk) = P(rk = 1| xk). The relationship between the survey variable
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and the predictors may be described through the following imputation model:

ξ : yk = m(xk) + ϵk, k ∈ Sr, (2)

where m(x) := E [Y |x] denotes the unknown regression function and the errors {ϵk}k∈U are

i.i.d. random variables satisfying E [ϵk|xk] = 0 and V (ϵk|xk) = σ2 < ∞.

Consider an estimator m̂ : Rp → R of m fitted on Dr := {(xk, yk) ; k ∈ Sr}. An imputed

estimator µ̂m̂ of µ, based on the imputation procedure m̂, is given by

µ̂m̂ := 1
N

∑
k∈Sr

yk

πk
+
∑

k∈Sm

m̂(xk)
πk

 , (3)

where m̂(xk) denotes the imputed value associated with k ∈ Sm.

3 Regression tree and random forest imputation

3.1 Regression tree imputation

Regression trees based on the CART algorithm (Breiman et al., 1984) are simple to imple-

ment and easily interpretable. With regression trees, the predictions are first obtained by

partitioning the predictor space spanned by the predictors on Dr according to some criterion

into disjoint regions called terminal nodes or leaves. Then, the prediction m̂tree at a point x

belonging to a terminal node, denoted A(x), is obtained by averaging the y-values recorded

for the respondents in the same node:

m̂tree(x) := 1
N (x, Sr)

∑
k∈Sr

1{xk∈A(x)}yk, (4)

where N (x, Sr) :=
∑

l∈Sr
1{xl∈A(x)} denotes the number of elements of Sr in the node A(x)

containing x. More generally, for any subset B ⊆ S, we use the following notations

N (x, B) :=
∑
ℓ∈B

1{xℓ∈A(x)}, N̂ (x, B) :=
∑
ℓ∈B

1{xℓ∈A(x)}
πl

, (5)

to denote the unweighted and the weighted number of elements of B belonging to the node

containing x, respectively.
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An imputed estimator of µ based on regression trees is thus given by

µ̂tree := 1
N

∑
k∈Sr

yk

πk
+
∑

k∈Sm

m̂tree(xk)
πk

 . (6)

The greedy CART algorithm (Breiman et al., 1984) is a popular method that recur-

sively searches for the splitting variable and the splitting position (i.e., the coordinates

on the predictor space where to split), leading to the largest possible reduction in the

residual mean of squares before and after splitting. More specifically, let CA be the set

of all possible pairs (j, z) = (variable, position) in A and AL (j, z) = {xk ∈ A;xkj < z},

AR(j, z) = {xk ∈ A;xkj ⩾ z} . The best split (j∗, z∗) in a region A is defined as an element

in (j∗, z∗) ∈ arg min(j,z)∈CA
{
∑

k∈Sr:xk∈AL(j,z)(yk−ȳAL
)2+

∑
k∈Sr:xk∈AR(j,z)(yk−ȳAR

)2}, where

ȳAL
(respectively ȳAR

) is the average of the y-values of units belonging to the node AL(j, z)

(respectively AR(j, z)). Splits are always performed in the middle of two points. The pro-

cedure continues until a stopping criterion is reached. Common stopping criteria include

specifying the minimum number of elements, n0, to be contained in each terminal node, or a

maximal depth of the tree, K. For more details about trees and partitioning procedures, the

reader is referred to Hastie et al. (2011) and Györfi et al. (2006). Since the CART algorithm

uses the data {(xk, yk)}k∈Sr
to partition the predictor space, the resulting mutually exclusive

regions depend on {(xk, yk)}k∈Sr
. Alternative algorithms that do not make use of the survey

variable Y to create the partition have been studied in the literature. This type of algorithm

is said to have the X-property (Devroye et al., 2013).

Remark 3.1. The estimator µ̂tree can be expressed as

µ̂tree = 1
N

∑
k∈Sr

wkyk,

with weights wk given by

wk = 1
πk

+ N̂ (xk, Sm)
N (xk, Sr) ,

where N̂ (xk, Sm) , denotes the weighted number of units in Sm belonging to the same leaf

as unit k, and N (xk, Sr) denotes its unweighted version on Sr; see Equation (5). Since

the partitioning algorithm usually uses the survey variable Y to make its splits, the weights

{wk}k∈Sr are dependent on Y . Also, in the case of an equal probability sampling design, the
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tree imputed estimator µ̂tree can be written in the so-called projection form:

µ̂tree =
∑
k∈S

m̂tree (xk) .

This property not longer holds for unequal probability sampling design unless the predictions

in each node are weighted by the inverse of the first-order inclusion probabilities.

3.2 Random forest imputation

Deep regression trees are simple to interpret and often exhibit a small model bias. However,

they may suffer from a large variance as they tend to overfit the data. Breiman (1996)

introduced the concept of bagged predictions, which consists of averaging predictions built

on a large collection of regression trees fitted on different bootstrap samples from the original

data. Random forests (Breiman, 2001) suggested adding even more diversity by considering

at each split a subset of p0 predictors selected randomly from the initial p predictors, as

split candidates. The randomness induced by the bootstrap sampling procedure and the

random selection of p0 predictors at each split may be formalized by introducing a random

variable Θ independent of the data and defined on some measurable space. The random

forest predictions of m(x) are thus a function of Θ; see e.g., Biau et al. (2008) for details.

Let m̂tree(·,Θ(b)) be the estimator of m based on the b-th randomized tree, b = 1, . . . , B,

where
{

Θ(b)
}B

b=1
is a set of i.i.d. random variables with distribution PΘ. For simplicity, we

write m̂(b)
tree for m̂tree(·,Θ(b)). The random forest prediction at x is defined as

m̂
(B)
rf (x) := 1

B

B∑
b=1

m̂
(b)
tree(x). (7)

The imputed y-values are given by m̂(B)
rf (xk), k ∈ Sm. An imputed estimator of µ based on

random forests with B trees is thus defined as

µ̂
(B)

rf := 1
N

∑
k∈Sr

yk

πk
+
∑

k∈Sm

m̂
(B)

rf (xk)
πk

 . (8)

We adopt the following notation: The node of the b-th tree containing element k ∈ S is

denoted Ab (xk). Also, for k ∈ S, we write ψ(b)
k = 1 if unit k is selected in subsample Sr (Θb)

of tree b, and ψ
(b)
k = 0 otherwise.
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The forest imputed estimator µ̂ (B)
rf given by (8) can be expressed as the average of

(randomized) tree imputed estimators,

µ̂
(B)

rf = 1
B

B∑
b=1

µ̂
(b)

tree, (9)

where µ̂ (b)
tree denotes the imputed estimator of µ given by (6). Therefore, many of the prop-

erties of tree imputed estimators are also shared by random forest imputed estimators. It is

worth pointing out that the random forest imputed estimator µ̂ (B)
rf can be written as

µ̂
(B)
rf = 1

N

∑
k∈Sr

w
(B)
k yk, where w

(B)
k = 1

πk
+ 1
B

B∑
b=1

ψ
(b)
k

N̂b (xk, Sm)
Nb (xk, Sr (Θb))

,

with Nb and N̂b defined as in (5) for the b-th tree of the forest. In the case of an equal

probability sampling design, we can write µ̂ (B)
rf as

µ̂
(B)

rf = 1
N

∑
k∈S

m̂
(B)

rf (xk) + 1
B

B∑
b=1

∑
k∈Sr

(
1 − ψ

(b)
k

) yk − m̂
(b)
tree (xk)
πk

 . (10)

The quantity (1 − ψ
(b)
k )(yk − m̂

(b)
tree (xk)), in (10), is non zero for units k ∈ Sr such that

ψ
(b)
k = 0, i.e., for units k ∈ Sr not selected on the b-th bootstrap sample. These units are

referred to as out-of-bag observations since they are not used in the model fitting. The second

term on the right-hand side of (10) serves as a bias-correction or debiasing term. A similar

result has been obtained by Dagdoug et al. (2023b) in case of model-assisted random forest

estimator. Notably, the form (10) holds even in the case of unequal probability sampling.

However, in this case, the sum of residuals over Sr (Θb) may not be equal to zero unless the

predictions from each tree are weighted by using the sampling weights.

In this article, we consider two random forest algorithms: (i) the uniform random forest

algorithm; (ii) the random forests of Breiman. Uniform random forests are primarily studied

in the literature because the partitions of the trees are independent of the observed data, thus

making their theoretical analysis much simpler. However, because they do not use the data

for building the partitions, they are of little practical interest. In practice, Breiman’s original

algorithm is typically used, but establishing its theoretical properties is more challenging.

Uniform random forests (Biau et al., 2008; Scornet, 2016) are based on a simple algorithm

whereby the partition is created independently of the observed data. More precisely, given
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a depth K, the partitioning algorithm splits each cell exactly K times, where each split

is performed by choosing uniformly at random a variable among the initial p predictors

X1, X2, . . . , Xp and a location along that coordinate uniformly at random.

As mentioned above, the randomness in Breiman’s algorithm arises from constructing

each of the B trees on different bootstrap samples and by considering as splitting candidates,

at each split, p0 predictors selected uniformly at random among the initial p predictors. We

consider a slight modification of the algorithm that consists of selecting the B random sam-

ples without replacement (i.e., subsampling) of size av instead of sampling with replacement.

This is common in the literature as it simplifies the theoretical derivations and is known to

lead to efficient estimators; see, e.g., Bühlmann and Yu (2002) and the references therein

for details. Finally, in Breiman’s algorithm, splits are performed up to reaching one of the

following two conditions: (i) there is only one respondent in the node considered; (ii) the

maximal depth, K, is reached.

4 Theoretical results

In this section, we establish the mean square consistency of imputed estimators based on

regression trees and random forests.

4.1 General assumptions

We consider the asymptotic framework of Isaki and Fuller (1982). Let {Uv}v∈N denote a

sequence of embedded finite populations of size {Nv}v∈N. In each finite population Uv, a

sample Sv, of size nv, is selected according to a sampling design Pv with inclusion probabilities

πk,v and πkℓ,v. While the finite populations are assumed to be embedded, we do not require

this property to hold for the samples {Sv}v∈N. Imputation within sample Sv is performed

using pv predictors. This asymptotic framework implies that, as v goes to infinity, the

population size Nv, the sample size nv, as well as the number of predictors pv increase to

infinity. To improve readability, we use the subscript v only in the quantities Uv, Nv, nv and

pv; quantities such as πk,v and πkℓ,v will simply be denoted by πk and πkℓ, respectively.

We start by describing a set of regularity conditions pertaining to the sampling design.

(H1) We assume that the sequence of sampling designs {Pv}v∈N is non-informative and

that:
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a) The sampling fraction is such that lim
v→∞

nv

Nv
= π∗ ∈ (0; 1).

b) There exists positive constants λ and λ∗ such that, for all v ∈ N, min
k∈Uv

πk ⩾ λ > 0,

min
k,ℓ∈Uv

πkℓ ⩾ λ∗ > 0.

c) The sample indicators covariances, ∆kℓ := πkℓ − πkπℓ for k ̸= ℓ ∈ Uv, are such that

lim sup
v→∞

nv max
k ̸=ℓ∈Uv

|πkℓ − πkπℓ| < ∞.

These assumptions are commonly used in the literature and are known to hold for fre-

quently encountered sampling designs, see e.g., Robinson and Särndal (1983) and Breidt

and Opsomer (2000). The non-informativeness assumption means that, conditionally on the

auxiliary variables, the sample selection indicators are independent of the survey variable;

see, e.g., Pfeffermann and Sverchkov (2009). Part (a) of (H1) requires that the sample sizes

{nv}v∈N increase at the same rate as the population sizes {Nv}v∈N. Part (b) requires that

both the first and second-order inclusion probabilities are bounded away from zero for the

sequence of sampling designs {Pv}v∈N. Finally, Part (c) states that the sampling covariances

decrease to zero with a rate of at least O
(
n−1

v

)
.

We also assume that: i) the regression function m is continuous; ii) the distribution of

the predictors Px is supported on Supp(Px), a compact subset the unit cube [0; 1]pv ; iii)

the residuals {ϵk}k∈U have compact support. Under these assumptions, note that the survey

variable Y is almost surely bounded, taking values in a set denoted [ay ; by], with ay < by.

Under Assumption (H1) and the fact that the survey variable Y is bounded, it can be

shown (Robinson and Särndal, 1983; Breidt and Opsomer, 2000) that there exists a positive

constant C such that

nvE[µ̂π,v − µv]2 ≤ C,

which implies that

lim
v→∞

E[µ̂π,v − µv]2 = 0.

That is, the sequence of (complete data) Horvitz-Thompson estimators {µ̂π,v}v∈N is mean-

square consistent for µv.
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4.2 Asymptotic properties of the regression tree imputed estimator

Before establishing the theoretical properties of µ̂tree in a more general setting, we describe

two simple yet rather unrealistic settings. For both settings, we assume that
∑

k∈S dk = N ,

which holds, for instance, in the case of simple random sampling without replacement. (i)

Suppose that yk = C for all k ∈ U . Then, µ̂tree is a perfect estimator of µ. That is,

µ̂tree = µ for all S. As a result, E[µ̂tree − µ]2 = 0. (ii) Suppose that yk = C + ϵk, k ∈ U

for some unknown parameter C, such that E(ϵk) = 0 and V(ϵk) = σ2. In addition, we

assume that the tree predictor has the X-property. It follows that E [µ̂tree − µ] = 0 and

V(µ̂tree − µ|X) = σ2∑
k∈Sr

w2
k > 0, where the weights {wk}k∈Sr satisfy N−1∑

k∈Sr
wkyk =

µ̂tree. In this setting, µ̂tree remains unbiased but is no longer a perfect estimator of µ. For

more general settings, the exact derivation of the bias or the variance is more challenging.

To establish the asymptotic properties of the tree imputed estimator based on the CART

criterion, additional notations and assumptions are needed. They are described next.

For a fixed v ∈ N, let C1([0; 1]pv ,R) be the space of continuously differentiable functions

defined on [0; 1]pv taking values in R, and let Av be the class of additive C1([0; 1]pv ,R)-

functions defined as

Av :=
{
gv(x) =

pv∑
j=1

gj(xj), gj ∈ C1([0; 1],R), j = 1, 2, . . . , pv

}
.

Let ||·||T V denote the total variation norm for elements gv in C1([0; 1]pv ,R) defined as

||gv||T V :=
∫

[0;1]pv ||∇g(x)||1dx, where ∇gv denotes the gradient of gv and || · ||1 the 1-vector

norm of Rpv defined by ||x||1 :=
∑pv

j=1 |xj |. If gv ∈ Av, then ||gv||T V =
∑pv

j=1
∫

[0;1]|g′
j(xj)|dxj ,

with gv
′ denoting the derivative of a function gv defined on R. In the case of a linear function

g represented as gv(x) := x⊤βv, this reduces to ||gv||T V =||βv||1. Lastly, for real-valued

functions defined on Rpv , we denote by ||g||∞ := supx∈Rpv |g(x)| the sup-norm.

Result 4.1. Consider a sequence of tree imputed estimators {µ̂tree,v}v∈N based on the CART

criterion with maximal depths {Kv}v∈N. Assume that (H1) holds and that the sequence of

regression functions {mv}v∈N and the sequence of trees {µ̂tree,v}v∈N satisfy:

1. mv ∈ Av for all v ∈ N and supv∈N||mv||∞ < ∞.

2. lim
v→∞

Kv = +∞, lim
v→∞

||mv||T V√
Kv

= 0 and lim
v→∞

2Kv log2 (nr,v) log(nr,vpv)
nr,v

= 0.
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Then, the sequence of tree imputed estimators {µ̂tree,v}v∈N satisfies:

lim
v→∞

E [µ̂tree,v − µv]2 = 0.

Condition 1 assumes that the regression function is continuously differentiable, additive,

and bounded. The first part of Condition 2 assumes that, as the sample and population sizes

increase to infinity, the depth of the tree increases to infinity. The rate of divergence should

be faster than the square total variation norm of the regression function. In the special case

where mv is a linear function with coefficients βv, this condition is automatically satisfied

if the sup-norm of the regression function is uniformly bounded and limv→∞Kv = +∞.

The second part of Condition 2 imposes a tradeoff between the growth rate of the depth,

the sample size, and the number of predictors. In particular, the number of predictors

can grow sub-exponentially fast, provided that the sparsity conditions imposed on the total

variation and sup norm are satisfied. These additional conditions are enough to guarantee the

convergence of the sequence of regression function estimators {mv}v∈N towards the regression

function in L2, as shown by Klusowski and Tian (2024); we refer the reader to Klusowski

and Tian (2024) for a more thorough discussion about these conditions.

4.3 Asymptotic properties of the random forest imputed estimator

4.3.1 From finite to infinite forests

In this section, we use the concept of infinite random forest predictor, which will prove useful

for (a) establishing the theoretical properties of imputed estimators based on random forests,

and (b) deriving variance estimators in Section 5. For a fixed v ∈ N, the infinite random

forest predictor is defined by

m̂
(∞)

rf,v := EΘ
[
m̂

(B)
rf,v

]
,

where EΘ denotes the expectation with respect to PΘ. In practice, m̂ (∞)
rf,v cannot be com-

puted. It is called an infinite forest predictor because, by the strong law of large numbers,

lim
B→∞

m̂
(B)

rf,v = lim
B→∞

1
B

B∑
b=1

m̂
(b)

tree,v
a.s.= m̂

(∞)
rf,v ,
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where the limit is taken in the almost sure sense. We define the infinite forest imputed

estimator as

µ̂
(∞)

rf,v := 1
N

∑
k∈Sr

yk

πk
+
∑

k∈Sm

m̂
(∞)

rf,v (xk)
πk

 . (11)

Since an imputed forest estimator can be expressed as an average of tree imputed estimators

(see relation (9) in Section 3.2), it follows from the strong law of large numbers that

lim
B→∞

µ̂
(B)

rf,v
a.s.= EΘ

[
µ̂

(B)
rf,v

]
= µ̂

(∞)
rf,v . (12)

Even though the infinite forest imputed estimator cannot be computed in practice, it is

possible to approach it with a finite forest imputed estimator based on a large number of

trees Bv. Moreover, the additional stability pertaining to µ̂ (∞)
rf,v will be useful for deriving

the theoretical properties of imputed estimators based on random forests.

Proposition 4.1. Consider sequences of finite {µ̂ (B)
rf,v }v∈N and infinite {µ̂ (∞)

rf,v }v∈N random

forest imputed estimators. The following results hold:

1. For all b = 1, . . . , Bv, E[µ̂(B)
rf,v − µv]2 ⩽ E[µ̂(b)

tree,v − µv]2, with equality if and only if

either B = 1 or all trees of the forest are equal with probability one.

2. There exists a constant C > 0, independent of B, such that

0 ⩽ E[µ̂ (B)
rf,v − µv]2 − E[µ̂ (∞)

rf,v − µv]2 ⩽
C

Bv
, for all Bv ⩾ 1.

As a consequence, E[µ̂(∞)
rf,v − µv]2 ⩽ E[µ̂(B)

rf,v − µv]2 ⩽ E[µ̂(b)
tree,v − µv]2, for all b = 1, ..., Bv.

Point (2) in Proposition 4.1 reveals that the mean squared error of infinite forests is, at

most, equal to the mean squared error of finite forests. It follows that infinite forests are

more efficient than finite forests. Proposition 4.1 also implies that the difference between the

mean square errors of the infinite forests and a random forest with Bv trees decreases to 0

as Bv increases.

4.3.2 Consistency of the random forest imputed estimators

We begin by considering the uniform random forests described in Section 3.2. An important

part of the proof is based on the idea that the forests under consideration are, in some sense,
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large and stable. That is, we assume that, without any requirement on the rate, that the

number of trees is strictly increasing, which implies that for v1 < v2 positive integers, the

number of trees Bv1 in m̂
(Bv1 )
rf used to impute in Sv1 is strictly smaller than the number of

trees Bv2 used to obtain m̂
(Bv2 )
rf in Sv2 . In other words, v1 < v2 implies that Bv1 < Bv2 . As

a result, limv→∞Bv = +∞.

Result 4.2. Consider a sequence of uniform forest imputed estimators {µ̂ (B)
urf,v}v∈N based on

trees with depths {Kv}v∈N. Suppose that assumption (H1) holds. We also assume that:

(1) The sequence of regression functions {mv}v∈N satisfies supv∈N||mv||∞ < ∞.

(2) The depths {Kv}v∈N increase as v increases such that the following conditions are

satisfied:

(a) lim
v→∞

pv

(
1 − 1

4pv

)Kv

= 0, and (b) lim
v→∞

2Kv

nv
= 0.

(3) The number of trees in the forest increases, i.e., lim
v→∞

Bv = +∞.

Then, the uniform random forest imputed estimator {µ̂ (B)
urf,v}v∈N satisfies:

lim
v→∞

E[µ̂ (B)
urf,v − µv]2 = 0.

The condition given in Part (1) of Result 4.2 follows from sufficient conditions for the

mean square consistency in high-dimensional settings of {m̂ (B)
urf,v − m̂v}v∈N towards 0; see

the Appendix. If the number of predictors is fixed, this condition reduces to the conditions

found in (Scornet, 2016, Corrolary 3.1). Condition (a) of Part (2) ensures the diameters

of each node decrease to 0 as v increases. It is satisfied, for instance, if Kv increases fast

enough compared to pv. Condition (b) is sufficient to ensure that the probability of having

an empty leaf converges to 0. Result 4.3 below extends the consistency of regression trees

imputed estimators to Breiman’s random forests.

Result 4.3. Consider a sequence of random forest imputed estimators {µ̂(B)
brf,v}v∈N based on

Breiman’s algorithm. The trees from the forests have maximal depths {Kv}v∈N. Suppose that

assumption (H1) holds. We also assume that:

1. The sequence of regression functions {mv}v∈N satisfies mv ∈ Av and sup
v∈N

||mv||∞ < ∞.
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2. The sequence of random forests {m̂(B)
brf,v}v∈N satisfies

(a) lim
v→∞

Kv = +∞, (b) lim
v→∞

√
pv||mv||T V√
p0v

√
Kv

= 0, (c) lim
v→∞

2Kv log2 (av) log(av pv)
av

= 0.

3. The number of trees Bv in the forest increases i.e., lim
v→∞

Bv = +∞.

Then, the random forest imputed estimator {µ̂ (B)
brf,v}v∈N based on Breiman’s algorithm satisfies

lim
v→∞

E[µ̂ (B)
brf,v − µv]2 = 0.

The conditions obtained on the parameters of {m̂(B)
brf,v}v∈N are similar to those presented

in Result 4.1. The impact of the number of predictors, p0v, to be selected randomly at each

split, also appears in Condition 2. As noted by Klusowski and Tian (2024), this condition

allows for choosing p0v negligible with respect to pv, provided that the depth Kv increases

fast enough, and that the regression function is sparse enough. However, these results are

asymptotic, and special care is needed to choose this parameter in practice in the context of

imputation. This aspect is further discussed in Section 7.

Remark 4.1. In Result 4.2 and Result 4.3, we require that the number of trees Bv increases

to infinity, i.e., limv→∞Bv = +∞, without rate requirement. This condition is indeed suffi-

cient to ensure the following implication:

lim
v→∞

E[µ̂ (∞)
rf,v − µv]2 = 0 =⇒ lim

v→∞
E[µ̂ (B)

rf,v − µv]2 = 0,

where {µ̂rf,v}v∈N denotes any sequence of random forest estimators. Clearly, the reverse

implication always holds. However, to ensure that the convergence rates of both finite and

infinite imputed estimators are the same, the stronger requirement of limv→∞ nv/Bv = 0

would be needed.

5 Variance estimation

In this section, we study the problem of variance estimation in the context of imputed data

through regression trees and random forests. We start by describing the naive variance

estimator, which is obtained by applying a complete data variance estimation procedure to
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the pseudo-values, ỹk = rkyk + (1 − rk)m̂(B)
rf (xk), obtained after imputation. This leads to

V̂naive := 1
N2

v

∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

ỹk

πk

ỹℓ

πℓ
, (13)

where ∆kℓ := πkℓ − πkπℓ. In general, the use of (13) may lead to a severe underestimation of

the total variance of µ̂(B)
rf . This is illustrated empirically in Section 6.2. To derive variance

estimators that account for sampling and nonresponse, we first decompose the total variance

of µ̂(B)
rf .

Proposition 5.1. Consider sequences of finite {µ̂ (B)
rf,v }v∈N and infinite {µ̂ (∞)

rf,v }v∈N forest

estimators. We have

V
(
µ̂

(B)
rf,v − µv

)
= V

(
µ̂

(∞)
rf,v − µv

)
+ E

[
VΘ

(
µ̂

(B)
rf,v

)]
, (14)

where VΘ denote the variance operator with respect to PΘ. Furthermore, there exists C > 0

such that

E
[
VΘ

(
µ̂

(B)
rf,v

)]
⩽

C

Bv
. (15)

It follows from Proposition 4.1 and (14), that the contribution of E
[
VΘ

(
µ̂

(∞)
rf,v

)]
to the total

variance V(µ̂ (B)
rf,v ) is negligible provided that nv/Bv = o(1). Proposition 5.1 suggests that the

contribution of the randomization variance can be made arbitrarily small by choosing a large

value of Bv. Empirical results in Section 7 suggest that the contribution E
[
VΘ

(
µ̂

(∞)
rf,v

)]
is small for moderate values of Bv. As a result, in Sections 5.1 and 5.2, we omit the term

E
[
VΘ

(
µ̂

(∞)
rf,v

)]
from the computations.

5.1 Variance estimation based on a first-order Taylor expansion

An estimator of the variance of µ̂(B)
rf can be obtained through the so-called reverse approach

of Fay (1991) and Shao and Steel (1999); see also Kim and Rao (2009) and Haziza and Vallée

(2020). This approach leads to the following decomposition of the total variance of µ̂(B)
rf :

V
(
µ̂

(B)
rf − µ|r

)
= E

[
V
(
µ̂

(B)
rf |r,y,X

)
|r,X

]
+V

[
E
(
µ̂

(B)
rf − µ|r,y,X

)
|r,X

]
:= V1 + V2, (16)
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where y = (y1, . . . , yN )⊤. As noted by various authors (Shao and Steel, 1999; Haziza and

Vallée, 2020), the contribution of the second term on the right-hand-side of (16) to the total

variance is negligible if the sampling fraction n/N is negligible. In the sequel, we assume

that n/N is negligible, which is commonly encountered in practice.

Using a first-order Taylor expansion, an estimator of V1 in (16) is given by

V̂1 :=
∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

ξ̂
(rf,B)

k

πk

ξ̂
(rf,B)

ℓ

πℓ
, (17)

where, for k ∈ S, we have

ξ̂
(rf,B)

k := 1
B

B∑
b=1

ξ̂
(tree,b)

k

:= rkyk + (1 − rk) m̂(B)
rf (xk) + 1

B

B∑
b=1

ψ
(b)
k

N̂b (xk, Sm)
N̂b (xk, Sr (Θb))

·
(
yk − m̂

(b)
tree(xk)

)
, (18)

where the notations N̂b (xk, Sm) and N̂b (xk, Sr (Θb)) are defined in (5), and Sr (Θb) denotes

the set of elements selected in the b-th subsample.

We point out that the derivation of V̂1 was made conditionally on the partition of the

predictor space. This is a simplification of reality as the partitions vary from one sample

to another. Also, for small values of n0, the estimator V̂1 may suffer from serious underes-

timation, largely due to overfitting. Indeed, the residuals, yk − m̂
(b)
tree(xk), in (18), can be

made artificially small for small values of n0. An extreme case arises when all sample resid-

uals are equal to zero, in which case V̂ 1 = V̂ naive, leading to severe underestimation. A

similar issue was encountered by Opsomer and Miller (2005) for selecting the bandwidth of

model-assisted estimators based on local polynomials, and in Dagdoug et al. (2023b) in the

context of model-assisted estimation based on random forests. To overcome this problem, we

propose a novel variance estimator based on a K-fold cross-validation procedure in Section

5.2, which extends the K-fold variance estimation procedure of Dagdoug et al. (2023b). The

reader is referred to Arlot and Celisse (2010) for a comprehensive overview of cross-validation

procedures.

Remark 5.1. For a single deterministic regression tree m̂tree, the linearized variable given
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by (18) reduces to

ξ̂k
(tree) = rkyk + (1 − rk) m̂tree(xk) + N̂ (xk, Sm)

N̂ (xk, Sr (Θb))
· (yk − m̂tree(xk)) , k ∈ S.

5.2 A variance estimator based on a K-fold cross-validation procedure

To circumvent the overfitting issue, we propose a new variance estimator based on a K-

fold cross-validation procedure. The proposed variance estimator is identical to V̂1 in (17),

except that the residuals ϵ̂k ≡
(
yk − m̂

(b)
tree(xk)

)
, k ∈ Sr, in (18) are replaced with residuals

constructed through a K-fold cross-validation procedure. Most often the value of K is set

to K = 3; 5; 10. More specifically, we proceed as follows: We start by replicating the set of

respondents Sr, K times. Each of these K datasets is then split into two disjoint subsets

S
(j)
r,train and S

(j)
r,test of respective sizes ntrain := nr × (K − 1) /K, which we assume to be an

integer for simplicity, and ntest := n − ntrain, for j = 1, 2, . . . ,K. Then, for each of the

K partitions, a random forest estimator of m is fitted on S
(j)
r,train. The B trees fitted on

S
(j)
r,train are then used to make predictions on S(j)

r,test, individually; that is, we do not average

these predictions to obtain the predictions of the forest, but we store the predictions from

each of these individual trees. Since each {S(j)
r,train, S

(j)
r,test}j=1,...,K leads to a partition of Sr,

each of the B trees residuals computed on S
(j)
r,test are uniquely defined. We thus obtain a

set {ϵ̂ (cv,b)
k ; k ∈ Sr, b ∈ {1, . . . , B}} of B × nr tree residuals. This leads to the proposed

variance estimator of V1:

V̂
(cv)

1 :=
∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

ξ̂
(cv)

k

πk

ξ̂
(cv)

ℓ

πℓ
, (19)

where

ξ̂
(cv)

k := rkyk + (1 − rk) m̂(B)
rf (xk) + 1

B

B∑
b=1

ψ
(b)
k

N̂b (xk, Sm)
N̂b (xk, Sr)

· ϵ̂ (b,cv)
k , k ∈ S. (20)

6 Simulation studies

In this section, we conduct a simulation study to compare the performance of several impu-

tation procedures in terms of bias and efficiency and to compare the performance of several

variance estimation procedures in terms of bias and coverage rate of normal-based confidence

intervals.
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6.1 Point estimation

We repeated R = 5, 000 iterations of the following process:

(i) A finite population of size N = 5, 000 was generated. The population consisted of a set

of p = 90 predictors X1, . . . , X90, and 5 survey variables Y1, . . . , Y5. To generate the X-

variables, we considered two scenarios: (i) The predictors were generated independently

from a normal distribution with mean equal to 5 and variance equal to 1. (ii) The

predictors were generated from a multivariate normal distribution with a mean vector

equal to 5 × 1⊤ and variance-covariance matrix whose diagonal elements were equal to

1 and the off-diagonal elements were equal to 0.7, where 1 denotes the vector of ones.

That is, the predictors were correlated. Given the values of X1, . . . , X90, we generated

5 survey variables according to the following models:

Y1 = 2 +X1 + 3X2 + 4X5 + N (0, 5) ,

Y2 = 10−3X6
1X

3
2 + N (0, 1) ,

Y3 = 1.5 + cos (X1 +X2 +X3 +X4) + N
(
0, 10−2

)
,

Y4 = 2 + 1{X1>7} − 1{X1<4} + 21{X4>6} + N (0, 1) ,

Y5 = 2 +X1 + 10 exp
(
21{X5>5} − 1{X5<6}

)
.

Note that the survey variables Y1, . . . , Y5 were generated using a subset of the first

five predictors X1, . . . , X5. We were interested in estimating the population means of

Y1, . . . , Y5, denoted by µ1, . . . , µ5, respectively.

(ii) From the finite population generated in Step (i), a sample of size n = 250 was selected

according to simple random sampling without replacement.

(iii) In each sample, the response indicators rk, k ∈ S, were independently generated ac-

cording to a Bernoulli distribution with probability

pk = logit (0.15 × {−30 +X1 +X2 +X3 +X4 + 2X5}) . (21)

This led to a response rate approximately equal to 50%.

(iv) The missing values in each sample were imputed by five imputation procedures:
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(1) Deterministic linear regression imputation;

(2) Regression tree (CART) imputation, with n0 = 10 and a complexity parameter1

cp = 0.01. The package Rpart (Therneau and Atkinson, 2022) was used for the

implementation of CART imputation.

(3) Random forest (RF) imputation with B = 1 000 trees, n0 = 10 elements in each

terminal node and p0 = p. We used the bootstrap as the resampling algorithm.

We implemented RF imputation using the package Ranger (Wright and Ziegler,

2017).

(4) Nearest neighbor (NN) imputation.

(5) K-nearest neighbour (KNN) imputation with K = 5. The package caret (Kuhn,

2022) was used for the implementation of both NN and KNN.

Because we were interested in understanding the impact of the number of predictors on

the behavior of the resulting imputed estimator, we considered two scenarios: (a) the

case where only the first 5 predictors were included in each model; b) the case where

the 90 predictors were included.

(v) In each completed data set and for each imputation procedure, we computed the esti-

mators µ̂m̂ given by (3).

As a measure of bias, we used the Monte-Carlo percent relative bias (RB), defined as

RB(µ̂m̂,j) := 100 × 1
R

R∑
r=1

(
µ̂

(r)
m̂,j

− µ
(r)
j

)
µ

(r)
j

, j = 1, 2, . . . , 5,

where µ̂(r)
m̂,j

denotes an estimator of µj at the r-th iteration, r = 1, . . . , R. As a measure of

relative efficiency (RE) with respect to the Horvitz-Thompson estimator, we used

RE(µ̂m̂,j) := 100 ×
∑R

r=1

(
µ̂

(r)
m̂,j

− µ
(r)
j

)2

∑R
r=1

(
µ̂

(r)
jπ − µ

(r)
j

)2 , j = 1, 2, . . . , 5.

The results for p = 5 with independent and correlated predictors are given in Table 1 and

Table 2, respectively. In both cases, LR was, as expected, the most efficient estimator for the
1The complexity parameter cp is a parameter available in the Rpart package, whereby, as per the Rpart

documentation, "any split that does not decrease the overall lack of fit by a factor of cp is not attempted".

21



Survey variable MC measure
Imputed estimators

LR NN 5NN CART RF

Y1
RB 0.0 0.5 0.7 0.6 0.4
RE 158 222 227 220 186

Y2
RB -1.4 -2.8 -3.1 3.4 1.0
RE 137 123 121 168 124

Y3
RB 0.4 1.1 1.3 -0.4 -0.1
RE 213 205 206 217 178

Y4
RB -0.1 -0.3 -0.3 0.2 0.1
RE 197 229 202 187 181

Y5
RB -2.1 -2.1 -2.6 1.0 0.0
RE 164 157 153 105 104

Table 1: Monte Carlo Simulation Results for p = 5 and independent predictors.

Survey variable MC measure
Imputed estimators

LR NN KNN CART RF

Y1
RB 0.0 0.4 0.8 0.9 0.5
RE 137 178 185 209 160

Y2
RB -19.2 -1.0 -1.1 7.4 1.3
RE 368 105 103 179 108

Y3
RB -0.1 -0.4 -0.8 -0.2 -0.5
RE 247 188 200 239 196

Y4
RB -1.7 0.0 0.4 0.3 0.1
RE 213 234 202 193 186

Y5
RB -10.0 -0.9 -1.0 2.8 0.1
RE 310 124 123 113 103

Table 2: Monte Carlo Simulation Results for p = 5 and correlated predictors.

variable Y1 with a value of RE of about 158% for p = 5 independent predictors. RF performed

better than the other procedures with a value of RE equal to 186% for p = 5 independent

predictors and 160% for p = 5 correlated predictors. For the survey variables Y2, . . . , Y5, LR

was generally biased, as expected. The biases were larger in the case of correlated predictors.

RF, on the other hand, exhibited negligible bias across all scenarios. In terms of RE, RF was

either comparable to the best procedure or the most efficient overall. The procedures NN,
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5NN, and CART were also efficient in most scenarios. However, in some scenarios, NN and

5NN exhibited a slight bias. This is likely due to the curse of dimensionality, e.g., Abadie

and Imbens (2006) and Yang and Kim (2019). RF outperformed CART in all the scenarios.

Survey variable MC measure
Imputed estimators

LR NN 5NN CART RF

Y1
RB 0.0 1.5 1.6 0.8 0.9
RE 305 588 536 259 263

Y2
RB -1.5 2.4 4.0 2.7 3.2
RE 286 286 256 158 150

Y3
RB 0.5 -0.9 -1.1 -1.3 -1.7
RE 485 396 315 259 231

Y4
RB -0.1 1.2 1.3 0.4 0.6
RE 461 386 293 193 177

Y5
RB -1.9 8.6 9.4 1.0 0.2
RE 348 52 8457 104 104

Table 3: Monte Carlo Simulation Results for p = 90 and independent predictors.

Survey variable MC measure
Imputed estimators

LR NN 5NN CART RF

Y1
RB 0.0 0.8 1 1.1 0.9
RE 249 231 226 237 193

Y2
RB -23.7 0.8 0.8 8.5 2.4
RE 790 112 107 210 111

Y3
RB 0.0 0.1 -0.4 0.1 -0.1
RE 615 275 226 268 205

Y4
RB -1.6 0.8 1.1 0.6 0.5
RE 519 293 233 213 190

Y5
RB -8.8 2.3 2.4 2.5 0.1
RE 507 181 155 111 102

Table 4: Monte Carlo Simulation Results for p = 90 and correlated predictors.

The results for p = 90 with independent and correlated predictors are given in Table 3

and Table 4, respectively. In most scenarios, RF exhibited negligible bias and was the most

efficient. For the survey variable Y1, RF outperformed LR with independent and correlated
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predictors. This is not surprising as the performance of linear regression imputation tends

to deteriorate as the dimension of the x-vector increases. Again, NN and 5NN suffered

from the curse of dimensionality. This was especially evident in the case of independent

predictors, where NN and KNN displayed a relative bias equal to 8.6% and 9.4%, respectively.

Comparing the results in Table 1 and Table 3, it is worth mentioning that, unlike the other

estimators, the performance of RF was only moderately impacted by the dimension of the

x-vector, which suggests that RF remain efficient even in a high-dimensional setting.

6.2 Performance of variance estimators

In this section, we investigate the performance of both the linearized variance estimator

proposed in Section 5.1 and the novel variance estimator based on a K-fold cross-validation

procedure proposed in Section 5.2. We used the same setup described in Section 6.1. As

a measure of bias of a variance estimator V̂ , we computed its Monte-Carlo percent relative

bias (RB) given by

RB(V̂ ) := 100 × 1
R

R∑
r=1

V̂ (r) − VMC (µ̂)
VMC (µ̂) ,

with VMC (µ̂) denoting the Monte-Carlo variance of µ̂ . We also computed the Monte Carlo

coverage rate of 95% normal-based confidence intervals of the form

ICr

(
µ̂(r), V̂ (r)

)
:=
[
µ̂(r) − 1.96 ×

√
V̂ (r) ; µ̂(r) + 1.96 ×

√
V̂ (r)

]
.

The Monte-Carlo coverage rate is then defined as

Coverage
(
µ̂(r), V̂ (r)

)
:= 100

R

R∑
r=1

1
µ∈
{

ICr

(
µ̂

(r)
t ,V̂ (r)

)}.
As in Section 6.1, the sample size n was set to 250, which corresponds to a sampling fraction,

n/N, equal to 5%. This can be viewed as a small sampling fraction. As in Section 6.1, the

sample size n was set to 250, corresponding to a sampling fraction n/N = 5%. This is

considered a small sampling fraction.

6.2.1 Variance estimation: Imputation through regression tree

Results for the case of p = 5 independent predictors and correlated predictors are presented

in Table 5 and Table 6, respectively. Results for the case of p = 90 with independent
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Survey variable Estimator
n0 = 5 n0 = 10 n0 = 20

RB Coverage RB Coverage RB Coverage

Y1

Naïve -56.4 77.9 -59.9 74.0 -66.4 65.0
Linearized -27.4 88.6 -18.9 89.4 -16.7 86.0

CV 5.0 94.0 0.1 92.4 -5.8 88.2

Y2

Naïve -34.4 88.2 -42.5 86.0 -48.9 82.5
Linearized -9.8 92.0 -6.6 93.5 -2.8 94.1

CV 6.2 93.8 4.5 94.8 4.3 95.0

Y3

Naïve -66.0 74.1 -68.8 72.0 -71.6 69.4
Linearized -33.0 88.8 -21.5 91.5 -13.1 92.6

CV 3.6 95.1 0.3 95.0 -1.6 94.2

Y4

Naïve -58.9 79.0 -59.9 78.6 -63.4 76.7
Linearized -29.5 90.1 -18.7 92.3 -15.6 92.7

CV 1.7 95.3 -2.4 94.8 -5.2 94.0

Y5

Naïve -3.9 94.0 -2.9 94.4 -7.7 93.0
Linearized -3.7 94.0 -2.6 94.4 -1.9 94.8

CV -0.7 94.4 0.4 94.7 6.6 95.5

Table 5: Monte-Carlo simulation results for tree variance estimators for p = 5 and indepen-
dent predictors.

predictors and correlated predictors are presented in Table 7 and Table 8, respectively.

As expected, the naive variance estimator suffered from large negative biases, leading

to substantial undercoverage in most scenarios. The linearized variance estimator V̂1 given

by (17) exhibited noticeable negative bias as well, although not as prominently as the naive

variance estimator. The bias was especially appreciable for small values of n0. For instance,

for Y1, the relative bias of the linearized variance estimator ranged between −33.5% and

−3.3% for p = 5 correlated predictors, whereas the values of the coverage rate ranged between

88.4% and 94.1%. A similar pattern was observed in the other scenarios. As mentioned in

Section 5.2, the poor behavior of (17) is most likely due to overfitting: small values of n0 tend

to produce artificially small sample residuals, which, in turn, produce variance estimates that

are too small. In contrast, the proposed variance estimator based on 10-fold cross-validation

procedure, performed well. For instance, for p = 5 correlated predictors (See Table 6) and
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Survey variable Estimator
n0 = 5 n0 = 10 n0 = 20

RB Coverage RB Coverage RB Coverage

Y1

Naive -46.3 82.3 -50.0 76.6 -57.0 53.2
Linearized -23.0 89.2 -17.5 86.4 -14.5 72.7

CV 4.5 93.9 -0.2 89.7 -2.1 76.4

Y2

Naive -14.3 91.5 -17.6 91.8 -26.3 90.5
Linearized -3.6 92.8 0.2 94.2 -0.5 94.7

CV 3.3 93.6 5.8 94.8 4.0 95.2

Y3

Naive -68.4 72.7 -71.5 70.2 -75.3 65.3
Linearized -33.5 88.4 -23.6 91.0 -13.8 91.4

CV 4.7 94.8 1.6 94.8 -2.8 93.3

Y4

Naive -60.2 78.5 -61.1 78.0 -62.4 76.5
Linearized -30.0 89.9 -21.0 91.8 -14.5 92.5

CV 1.9 94.8 -3.1 94.4 -5.5 93.8

Y5

Naive -3.5 94.0 -3.4 94.1 -1.3 94.5
Linearized -3.3 94.0 -3.2 94.1 -0.5 94.8

CV -1.6 94.1 -1.7 94.4 2.1 95.4

Table 6: Monte-Carlo simulation results for tree variance estimators for p = 5 and correlated
predictors.

n0 = 5, the values of relative bias ranged from -0.7% to 6.2% in the case of Y1, . . . , Y5, and

the coverage rate ranged from 93.8% to 95.3%. Similar results were obtained for p = 90

predictors.

6.2.2 Variance estimation: Imputation through random forests

In this section, we present the results for imputation through random forests. The forests

were based on B = 100 trees, and the value of p0 was set to p. The choice of p0 is further

discussed in Section 7.3. Results for p = 5 correlated predictors are presented in Table

9. Results for p = 90 predictors were very similar and are thus omitted. From Table 9,

we note that the proposed variance estimator based on a 10-fold cross-validation procedure

performed well, especially for n0 = 5 and n0 = 10. In contrast, the naive variance estimator

and the linearized variance estimator suffered from substantial bias in most scenarios.
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Survey variable Estimator
n0 = 5 n0 = 10 n0 = 20

RB Coverage RB Coverage RB Coverage

Y1

Naïve -60.9 71.6 -61.8 70.6 -64.7 64.8
Linearized -44.4 80.0 -28.1 85.1 -14.5 85.6

CV 2.5 91.7 -0.4 90.8 -1.8 88.5

Y2

Naïve -37.5 87.2 -41.0 86.0 -46.2 83.4
Linearized -17.6 91.4 -7.3 93.4 -0.5 94.5

CV 2.4 94.7 4.4 94.9 6.9 95.3

Y3

Naïve -66.8 72.2 -68.7 70.7 -72.1 66.8
Linearized -48.7 82.0 -33.5 87.3 -20.9 89.8

CV 6.1 94.6 1.9 93.8 -3.9 92.7

Y4

Naïve -58.7 78.9 -59.7 78.7 -62.0 77.4
Linearized -42.0 86.3 -27.4 90.8 -16.6 92.7

CV 3.5 95.3 -1.1 94.7 -0.5 94.9

Y5

Naïve -4.1 94.1 -4.8 94.1 -6.8 93.6
Linearized -4.0 94.1 -4.5 94.2 -4.7 94.3

CV -1.4 94.4 -2.2 94.5 0.3 95.1

Table 7: Monte-Carlo simulation results for tree variance estimators for p = 90 and inde-
pendent predictors.

7 Choice of hyper-parameters

Random forest algorithms require the specification of several hyper-parameters. In this

section, we discuss the choice of three hyper-parameters: the number of trees B, the number

of observations n0 in each terminal node, and p0, the number of predictors randomly selected

at each split.

7.1 Choice of B

Selecting the number of trees B to be used is likely the simplest parameter to decide on: the

more, the better. Indeed, choosing a large value of B leads to more efficient point estimators

of a population mean; see Proposition 4.1 and Proposition 5.1. Also, it simplifies the variance

estimation process, as the second term on the right-hand side of (14) can be safely omitted

from the computations.
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Survey variable Estimator
n0 = 5 n0 = 10 n0 = 20

RB Coverage RB Coverage RB Coverage

Y1

Naïve -50.1 78.3 -50.5 74.3 -57.7 53.9
Linearized -36.3 83.6 -24.6 84.3 -20.3 71.8

CV 3.2 91.8 0.8 89.4 -4.1 76.7

Y2

Naïve -19.8 90.6 -23.2 91 -33.1 91
Linearized -3.8 91.5 0.3 93.1 -1.7 94.9

CV 6.1 92.5 6.5 93.7 2.3 95.3

Y3

Naïve -70.7 71.7 -72.6 69.2 -75.9 64.8
Linearized -50.8 82.9 -37.7 87 -24.3 89.6

CV 4.2 94.6 -1 94.2 -7.1 92.9

Y4

Naïve -61.5 77.6 -61.6 77.3 -63.1 76.2
Linearized -44.2 85.9 -31 89.2 -22.3 90.9

CV 1.9 94.8 -3.1 94.1 -8.8 93.1

Y5

Naïve -2.5 94.2 -1.7 94.4 -4 94.1
Linearized -2.4 94.2 -1.4 94.4 -3.6 94.2

CV -0.6 94.4 0.1 94.7 -1.9 94.7

Table 8: Monte-Carlo simulation results for tree variance estimators for p = 90 and correlated
predictors.

The contribution of the randomization variance E
[
VΘ

(
µ̂

(B)
rf

)]
to the total variance

V
(
µ̂

(B)
rf

)
was assessed through a simulation study. The Monte-Carlo contribution of

E
[
VΘ

(
µ̂

(B)
rf

)]
is given by

ContributionMC

(
µ̂

(B)
rf

)
:= 100 ×

1
R

∑R

r=1
V

(r)
MC,Θ

(
µ̂

(B)
rf

)
VMC

(
µ̂

(B)
rf

) ,

where VMC

(
µ̂

(B)
rf

)
denotes the usual Monte-Carlo variance of µ̂(B)

rf and V
(r)

MC,Θ

(
µ̂

(B)
rf

)
de-

notes the Monte-Carlo conditional variance of µ̂(B)
rf computed by, conditionally on the rth

population, the r-th sample and the r-th set of respondents, resampling from PΘ a number

RΘ of iterations to compute the Monte-Carlo variance of the estimator µ̂(B)
rf (Θ). Results

for the survey variables Y1-Y5 (see Section 6) are shown in Figure 1. From Figure 1, the

contribution of the randomization variance decreased rapidly as B increased. With B = 50
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Survey variable Estimator
n0 = 5 n0 = 10 n0 = 20

RB Coverage RB Coverage RB Coverage

Y1

Naïve -45.2 83.1 -45.1 81.9 -48.4 77.2
Linearized -40.8 84.6 -33.2 85.9 -26.0 85.4

CV 6.4 93.9 5.3 93.3 0.3 90.8

Y2

Naïve -10.8 91.6 -9.4 91.9 -13.8 92.0
Linearized -9.2 92.0 -5.4 92.6 -7.3 93.4

CV -0.7 93.2 2.7 93.6 0.4 94.3

Y3

Naïve -67.2 73.8 -67.5 73.4 -70.3 71.5
Linearized -60.4 78.4 -48.2 83.9 -37.6 87.6

CV 4.2 94.6 6.8 95.3 6.1 95.2

Y4

Naïve -60.7 78.0 -60.7 78.4 -60.7 78.3
Linearized -54.5 81.3 -45.2 85.5 -34.8 88.9

CV 6.6 95.4 4.4 95.1 1.8 95.0

Y5

Naïve -3.0 94.1 -3.9 94.2 -1.7 94.2
Linearized -2.9 94.1 -3.8 94.2 -1.5 94.2

CV -0.7 94.4 -1.7 94.4 0.5 94.5

Table 9: Monte-Carlo simulation results for random forest variance estimators for p = 5 and
correlated predictors.

trees, the contribution of the randomization variance fell below 3% for all survey variables.

The results of this experiment suggest that we can safely omit the randomization variance

from the computations for large B, say B = 1, 000.

Next, we provide a concentration inequality that highlights that, with high probability,

the random forest imputed estimator based on a finite number of trees B can be made

arbitrarily close to the (infeasible) infinite forest imputed estimator.

Proposition 7.1. Fix Bv ∈ N and ϵ > 0. The probability that the finite forest imputed

estimator is not in an ϵ-neighbourhood of the infinite forest estimator is bounded by

PΘ
(
|µ̂ (B)

rf,v − µ̂
(∞)

rf,v | ⩾ ϵ
)
⩽ 2 exp

 −Bvϵ
2

2n2
m,v

N2
v

(
by − ay

mink∈Uv πk

)2

 , (22)
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Figure 1: Contribution of the randomization variance E
[
VΘ

(
µ̂

(B)
rf,j

)]
to the overall variance

V
(
µ̂

(B)
rf,j

)
as a function of B, with p = 5 correlated predictors.

where [ay ; by] denotes the support of Y .

Since the bound given decreases to 0 as B increases, it follows from (22) that µ̂ (B)
rf

converges in probability to µ̂ (∞)
rf . This result is not surprising as almost sure convergence (see

(12)) implies convergence in probability. The bound (22) may be used to select the number

of trees in practice. For simple random sampling without replacement, the denominator on

the right hand-side of (22) can be expressed as

PΘ
(
|µ̂ (B)

rf,v − µ̂
(∞)

rf,v | ⩾ ϵ
)
⩽ 2 exp

(
−Bvϵ

2

2 (1 − p̄v)2 (by − ay)2

)
, (23)

where p̄v := nr,v/nv denotes the response rate. Expression (23) suggests that a larger number

of trees would be required for a low response rate p̄v.

7.2 Choice of n0

The number of observations, n0, in each terminal node of a tree determines its complexity: a

small value of n0 tends to produce flexible predictions, exhibiting low bias but potentially a

large variance. To avoid overfitting and reduce a tree’s unnecessary complexity, it is common

practice to perform some form of pruning (Hastie et al., 2011). To illustrate the impact of

n0 on the properties of imputed estimators, we conducted a limited simulation study us-

ing the same setup as the one described in Section 6. The values of n0 varied from 1 to

(E [nr] + 1)/2, the latter most often leading to a single node in each tree. We computed the
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Monte Carlo bias, variance, and mean squared error of the imputed estimator of µ1, . . . , µ5,

the population means of Y1, . . . , Y5, respectively. The results are shown in Figure 2.
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Figure 2: Square bias (green curve), variance (red curve) and mean square error (red curve)
of tree imputed estimators as a function of n0 with p = 5 correlated predictors.

From Figure (2), the behavior of the tree imputed estimator was similar across all survey
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variables except Y3. In every scenario, small values of n0 led to the best results in terms of

bias and variance. As n0 increased, the bias increased. This can be explained by the fact

that a large value of n0 led to shallow trees and somewhat heterogeneous terminal nodes in

terms of the survey variable requiring imputation.

For the variable Y3, both the bias and the variance were essentially identical for all values

of n0. This is an uncommon scenario. Our findings indicate that selecting values for n0 in

the range of 5 to 15 seems to be a safe choice.

7.3 Choice of p0

In this section, we discuss the choice of p0, the number of predictors considered at each split.

Proposition 7.2. Let Tb denote the number of nodes in the b-th tree and let X denote an

arbitrary predictor among X1, ..., Xpv . Then,

PΘ
(
{X not considered in m̂

(B)
rf,v}

)
=

Bv∏
b=1

{
1 − p0v

pv

}Tb−1
.

Proposition 7.2 suggests that, when the value of p0 is relatively small compared to p,

for a given fixed B, there is a high probability that a predictor X will not be considered.

However, in order to achieve an efficient reduction of the potential nonresponse bias, the

predictors that are associated with both the survey variable requiring imputation and the

response indicators must be included for obtaining the predictions. If p0 is small compared

to p, the predictions will likely fail to incorporate these important predictors. Ultimately,

this may result in a biased estimator of the population mean. To cope with this issue, we

suggest performing a set of univariate analyses to determine which predictors among the

available predictors are related to the response indicator. The selected predictors would

then be considered at each split with probability one. For the non-selected predictors, we

select, as usual, a subset of predictors at random.

To illustrate the effect of p0 on the quality of the resulting estimators, we conducted a

simulation study using the same setup as the one described in Section 6. Recall from (21) that

the predictors X1-X5 were related to the response indicators. Again, we were interested in es-

timating µ1, µ2, . . . , µ5, the population means of the survey variables Y1-Y5, respectively. We

considered three choices for p0: p0 = ⌊√
p⌋, p0 = p, and p0 = M := ⌊

√
p− 5⌋+{X1, . . . , X5}.
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Figure 3: Evolution of the mean squared errors (red curves), squared biases (green curves),
and variances (blue curves) of random forests estimators as the number of predictors p in-
creases. Dotted lines represent the choice p0 = ⌊√

p⌋, full lines represent p0 = p, combination
of both indicates the choice p0 = M := ⌊√

p⌋ + MAR variables.

For the latter choice, the predictors X1-X5 were considered at each split with probability

one, as they were associated with the response indicator, while the p−5 remaining predictors
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were subject to a random selection. In our experiments, the number of predictors p ranged

between 5 and 200.

Results are shown in Figure (3). We start by noting that the default choice in most

software packages, p0 = ⌊√
p⌋, produced biased estimators, in general. The bias increased as

the number of predictors p increased. This can be explained by the fact that, as the number

of predictors increased, the likelihood of the predictors X1 through X5 being considered at

each split diminished significantly. Therefore, for a large number of predictors, it is likely

that a significant proportion of the predictions will not incorporate X1-X5. The choice p0 = p

led to good results in all the scenarios, as expected. Finally, our proposal, p0 = M, led to

results as good or better than the ones obtained with p0 = p. Note that this choice led to

good results even when p was larger than the number of respondents nr. For these reasons,

we recommend choosing p0 = M in practice.

8 Final remarks

In this article, we have studied the theoretical properties of the regression tree and random

forest imputed estimators. In particular, we have established the mean square consistency of

the imputed estimator in a high-dimensional setting which allowed the number of predictors

to diverge. In addition, we proposed a novel variance estimator based on a K-fold cross-

validation procedure. Unlike the customary variance estimator based on a first-order Taylor

expansion, our simulation results suggest that the proposed variance estimator performs well

in terms of bias and coverage rate of normal-based confidence intervals.

This work constitutes a first step toward understanding the behavior of regression trees

and random forest imputed estimators with survey data. Several questions remain open.

First, establishing the convergence rate and asymptotic behavior of these imputed estimators

would be desirable. This would require techniques different from those used in this paper,

as minimax rates can be much slower in the case of nonparametric methods than the actual

convergence rate of imputed estimators. Establishing a central limit theorem would also

be useful. The proposed variance estimator based on a K-fold cross-validation shares some

common features with the so-called cross-fitting variance estimator that has been studied

in the context of causal inference for estimating the average treatment effect; e.g., Wager
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et al. (2016). Cross-fitting is a technique used to reduce overfitting and bias of the point and

variance estimators. It involves splitting the dataset into multiple folds. For each fold, part

of the data is used to estimate nuisance parameters, while the other part is used to estimate

the point and variance estimator. We refer the reader to the seminal works of Chernozhukov

et al. (2017); Newey and Robins (2018) and Smucler et al. (2019) for additional details

on sample splitting procedures. Additionally, employing cross-fitting procedures simplifies

proving the consistency and asymptotic normality of the point estimators. The application

of cross-fitting procedures to both point and variance estimation procedures in the context

of survey data is currently under investigation.

Moreover, other useful tools could include the theory of incomplete U-statistics that were

used for the estimator of the regression function estimator (Mentch and Hooker, 2016; Zhou

et al., 2019; Xu et al., 2024).

Appendix

8.1 Supplementary simulation results: Poisson sampling

We present the results of a simulation study that assesses the performance of point and

variance estimators in the context of Poisson sampling. The simulation setup used in this

section is identical to the one used in Section 6, except that simple random sampling without

replacement was replaced by Poisson sampling, whereby the first-order inclusion probabilities

were defined as

πk := nx2
k1∑

l∈U x
2
l1
, k ∈ U.

This ensured that all inclusion probabilities were strictly positive, with values ranging from

0.004 to 0.15. Table 10 presents the correlation between the πk’s and the survey variables

Y1, ..., Y5, for the cases of both independent and correlated covariates. As shown in Table 10,

Y1 Y2 Y3 Y4 Y5

Independent covariates 0.27 0.71 -0.17 0.24 0.06

Correlated covariates 0.72 0.72 -0.01 0.47 0.52

Table 10: Correlation between the survey variables and the inclusion probabilities.

the first-order inclusion probabilities were highly correlated to some of the survey variables,

reaching correlations up to 0.72. The results pertaining to the behavior of point estimators
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are presented in Tables 11-14. The results of the behavior of variance estimators based on

regression trees, are presented in Table 15 for the case of independent covariates. As the

results for dependent covariates are nearly identical to those for independent covariates, we

have chosen to omit their presentation.

Overall, for both point and variance estimation, the conclusions of the simulation results

are very similar to those presented in Section 6 in the case of simple random sampling without

replacement. The only slight difference arises in variance estimation: both the naïve variance

estimators and those based on a first-order Taylor expansion showed less bias compared to

their counterparts in simple random sampling without replacement. This can be attributed

to the relatively high dispersion of the sampling weights π−1
k , which makes the complete

data estimator unstable. Consequently, the sampling variance contributes significantly to

the total variance, reducing the relative impact of nonresponse on the variance estimators.

Nonetheless, the variance estimator based on a K-fold cross-validation procedure behaved

very well, and improved on the variance estimators based on a first-order Taylor expansion.

Survey variable MC measure
Imputed estimators

LR NN KNN CART RF

Y1
RB 0.0 0.7 1.2 1.3 0.8
RE 101.7 106.1 108.3 109.5 105.3

Y2
RB -0.1 0.3 0.9 11.6 1.6
RE 921.8 107.9 107.5 309.3 109.9

Y3
RB 0.0 -0.8 -0.4 0.6 -0.4
RE 137.7 119.1 111.7 124.6 113.8

Y4
RB 0.0 0.8 1.6 1.6 0.9
RE 148.6 157.2 145.4 147.2 140.8

Y5
RB 0.0 -0.7 -0.6 4.0 0.3
RE 345.6 114.6 113.1 126.3 101.9

Table 11: Monte Carlo Simulation Results for p = 5 and correlated predictors with Poisson
sampling.

8.2 Proofs and technical details

We will start by establishing a preliminary result that will prove useful in establishing the

mean square consistency of imputed estimators obtained through regression trees and random
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Survey variable MC measure
Imputed estimators

LR NN KNN CART RF

Y1
RB -0.1 0.6 0.9 0.8 0.6
RE 101.2 104.4 105.0 105.1 103.6

Y2
RB -0.3 0.9 2.3 5.4 2.1
RE 183.0 124.4 127.6 193.9 128.2

Y3
RB -0.1 0.8 0.5 -0.7 -0.3
RE 127.4 119.9 118.9 121.4 114.1

Y4
RB -0.1 0.5 0.7 1.2 0.8
RE 131.0 138.5 127.0 132.0 125.2

Y5
RB -0.2 -2.0 -2.2 1.8 0.5
RE 147.2 133.8 128.1 105.8 102.6

Table 12: Monte Carlo Simulation Results for p = 5 and independent predictors with Poisson
sampling.

Survey variable MC measure
Imputed estimators

LR NN KNN CART RF

Y1
RB -0.1 1.1 1.5 1.4 1.3
RE 108.2 110.6 111.9 110.4 108.8

Y2
RB -0.2 3.6 4.3 14.2 3.0
RE 3742.2 136.6 135.0 426.0 118.6

Y3
RB -0.1 -0.4 -0.3 0.8 0.1
RE 202.7 132.4 117.8 131.8 115.1

Y4
RB -0.7 1.7 2.4 1.7 1.6
RE 253.7 175.2 155.5 155.8 141.8

Y5
RB -10.5 3.0 3.1 3.6 0.4
RE 550.6 164.5 146.7 121.8 101.9

Table 13: Monte Carlo Simulation Results for p = 90 and correlated predictors with Poisson
sampling.

forests.

Result 8.1. We assume that (H1) holds. Let {m̃v}v∈N be a sequence of regression function

estimates fitted on DUv := {(xk, yk) ; k ∈ Uv} and let x ∼ Px be independent of DUv . Let

{m̂v}v∈N be the corresponding estimates fitted on Drv = {(xk, yk) ; k ∈ Sr,v}. If:

i) The sequence of population predictors {m̃v}v∈N satisfies
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Survey variable MC measure
Imputed estimators

LR NN KNN CART RF

Y1
RB 0.0 2.2 2.3 1.4 1.6
RE 104.3 120.0 119.5 109.0 110.0

Y2
RB -0.7 18.7 21.5 5.5 6.3
RE 367.0 860.2 931.2 184.8 180.3

Y3
RB 0.9 -2.6 -2.9 -2.2 -2.8
RE 170.7 148.4 135.6 131.6 122.9

Y4
RB 0.4 3.3 3.4 2.6 2.7
RE 211.3 190.4 168.3 144.1 135.9

Y5
RB -1.2 8.6 9.4 1.8 0.5
RE 262.6 324.7 282.6 105.8 102.4

Table 14: Monte Carlo Simulation Results for p = 90 and independent predictors with
Poisson sampling.

Survey variable Estimator
n0 = 5 n0 = 10 n0 = 20

RB Coverage RB Coverage RB Coverage

Y1

Naïve -1.6 94.7 1.0 95.0 -1.0 94.9
Shao -1.1 94.7 1.4 95.0 -1.0 94.9
CV -0.9 94.7 1.0 95.0 -1.7 94.8

Y2

Naïve -23.5 91.6 -27.2 90.1 -33.3 85.5
Shao -13.0 93.5 -9.7 93.2 -8.2 91.6
CV 1.8 95.2 2.0 94.9 0.2 93.1

Y3

Naïve -19.1 91.6 -19.6 91.3 -23.3 90.3
Shao -9.9 93.1 -5.5 93.7 -5.9 93.3
CV 5.2 95.0 4.3 94.8 0.1 93.9

Y4

Naïve -26.7 90.5 -23.6 91.5 -23.4 90.9
Shao -15.5 92.7 -8.0 94.0 -5.8 94.1
CV -0.4 94.8 -0.3 94.9 -1.7 94.6

Y5

Naïve -3.1 93.7 0.1 94.2 -1.5 94.2
Shao -3.1 93.7 -0.2 94.2 0.4 94.8
CV -1.2 94.0 1.4 94.5 5.2 95.3

Table 15: Monte-Carlo simulation results for various variance estimators across different
sample sizes (n0) with p = 5 independent covariates with Poisson sampling.

lim
v→∞

E

[(
m̃v(x) −m(x)

)2 ]
= 0,
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with a convergence rate denoted by γv, with γv → 0.

ii) There exists a positive constant C, independent of v, such that

E

{(
m̂v(x) −m(x)

)2 ∣∣∣∣rv,Xv, Iv

}
⩽ C. a.s.

Then, the sequence of imputed estimators {µ̂m̂v
}v∈N satisfies

E
(
µ̂m̂v

− µv

)2
= O(max(γv, 1/nv)). (24)

Condition (i) is satisfied for a large number of (parametric and nonparametric) estimators

of the regression function, including, for instance, k-nearest neighbors and kernel regression,

among others; see Györfi et al. (2006). Result 8.1 suggests that, in order to build a consistent

imputed estimator, it is enough to use a consistent regression function estimator to impute

the missing values. Note that Result 8.1 holds in a high-dimensional setting in which the

number of predictors {pv}v∈N is allowed to increase to infinity, provided that conditions i)

and ii) of Result 8.1 are satisfied.

Proof. We write

E

[(
µ̂

m̂v
− µv

)2
]
⩽ 2E

[(
µ̂

m̂v
− µ̂π,v

)2
]

+ 2E
[
(µ̂π,v − µv)2

]
, (25)

where µ̂π,v denotes the complete data estimator given by (1). The second term of the right hand-

side of (25) is the mean squared error of µ̂π,v and it can be shown that under the assumption (H1),

E
[
(µ̂π,v − µv)2

]
= O(n−1

v ) (Robinson and Särndal, 1983; Breidt and Opsomer, 2000). Consider now

the first term on the right hand-side of (25), which can be written as follows:

µ̂
m̂v

− µ̂π,v = 1
Nv

∑
k∈Sv

{
(1 − rk)
πk

(m̂v(xk) − yk)
}
.

Hence,

E

[(
µ̂

m̂v
− µ̂π,v

)2
]
⩽ 2E

[(
1
Nv

∑
k∈Sv

(1 − rk)
πk

· {m̂v(xk) −m(xk)}
)2
]

(26)

+ 2E
[(

1
Nv

∑
k∈Sv

(1 − rk)
πk

(m(xk) − yk)
)2
]
.
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Write

E

[(
1
Nv

∑
k∈Sv

(1 − rk) (m(xk) − yk)
)2
]

= E

 1
N2

v

∑
k,ℓ∈Sv

ℓ ̸=k

(1 − rk)
πk

(1 − rℓ)
πl

× ϵkϵℓ

 (27)

+ E
[

1
N2

v

∑
k∈Sv

(
(1 − rk)
πk

)2
ϵ2k

]
.

For the first term on the right hand-side of (27), we use the law of total expectation to obtain

E

 1
N2

v

∑
k,ℓ∈Sv

l ̸=k

(1 − rk)
πk

(1 − rl)
πl

× ϵkϵℓ

 = E

 1
N2

v

∑
k,ℓ∈Sv

ℓ ̸=k

(1 − rk)
πk

(1 − rℓ)
πℓ

E

[
ϵkϵℓ

∣∣∣∣Xv, Iv, rv

]
= 0,

since the random variables ϵk and ϵℓ are independent for all k ̸= ℓ and E [ϵk|xk] = 0. For the second

term on the right hand-side of (27), we have that

E

[
1
N2

v

∑
k∈Sv

(
(1 − rk)
πk

)2
ϵ2k

]
⩽

Nv

λ2N2
v

max
k∈Uv

E
[
ϵ2k
]

= σ2

λ2Nv
= O(N−1

v ).

It remains to bound the first term on the right hand-side of (26). Bounding arguments ensure that

E

[(
1
Nv

∑
k∈Sv

(1 − rk)
πk

(m̂v(xk) −m(xk))
)2
]
⩽

nv

λ2Nv
E

 1
Nv

∑
k∈Sm,v

(
m̂v(xk) −m(xk)

)2
 .

Now, Condition ii) implies that there exists a positive constant C > 0, independent of v, such that

E

[(
m̂v(xk) −m(xk)

)2 ∣∣∣∣rv,Xv, Iv

]
⩽ C, a.s.

From Condition ii) and the assumptions MAR and that the sampling design is non-informative, it

follows that, uniformly,

E

[(
m̂v(xk) −m(xk)

)2 ∣∣∣∣rv,Xv, Iv

]
P−→ 0.

Hence, by the Lebesgues dominated convergence theorem,

lim
v→∞

E

 1
Nv

∑
k∈Sm,v

E

[(
m̂v(xk) −m(xk)

)2∣∣∣∣rv,Xv, Iv

] = 0,

with the rate O(γv). The result follows. ■
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Proof of Result 4.1. We begin by noting that, from Corollary 4.3 of Klusowski and Tian (2024),

it follows that the sequence {m̃tree,v}v∈N of tree predictors fitted on DNv is consistent in L2 for m,

meaning

lim
v→∞

E

[(
m̃tree,v(x) −mv(x)

)2]
= 0,

which is Condition i) of Result 8.1. Since Y is assumed to be almost surely bounded, it follows that

there exists C > 0, satisfying

E

{(
m̂tree,v(x) −mv(x)

)2 ∣∣∣∣rv,Xv, Iv

}
⩽ C. a.s.

Therefore, Condition ii) of Result 8.1 holds as well. Hence, Result 8.1 ensures the mean-square

consistency of {µ̂tree,v}v∈N . ■

Proof of Proposition 4.1.

1. We can write

E(µ̂ (B)
rf,v − µv)2 = E

[
1
B

B∑
b=1

(µ̂ (b)
tree,v − µv)

]2

⩽
1
B

B∑
b=1

E

[
EΘ

(
µ̂

(b)
tree,v − µv

)2
]

= E

[
EΘ

(
µ̂

(b)
tree − µv

)2
]

= E(µ̂ (b)
tree − µv)2,

using the fact that {Θb}b=1,...,B are i.i.d.; moreover, equality holds if and only if there exists C

such that µ̂ (b)
tree = C, almost surely, for all b = 1, ..., Bv, which implies that µ̂(B)

rf,v = C almost

surely, meaning that the forest is degenerate.

2. The proof essentially follows ideas described in Scornet (2016). Write

(
µ̂

(B)
rf,v − µv

)2
=
(
µ̂

(B)
rf,v − µ̂

(∞)
rf,v + µ̂

(∞)
rf,v − µv

)2

=
(
µ̂

(B)
rf,v − µ̂

(∞)
rf,v

)2
+
(
µ̂

(∞)
rf,v − µv

)2
+ 2

(
µ̂

(B)
rf,v − µ̂

(∞)
rf,v

)(
µ̂

(∞)
rf,v − µv

)
. (28)

Next, note that

E
[(
µ̂

(B)
rf,v − µ̂

(∞)
rf,v

)(
µ̂

(∞)
rf,v − µv

)]
= E

[
EΘ

[(
µ̂

(B)
rf,v − µ̂

(∞)
rf,v

)](
µ̂

(∞)
rf,v − µv

)]
= 0.

Taking expectations on both sides of (28) leads to

E

[(
µ̂

(B)
rf,v − µv

)2
]

= E

[(
µ̂

(B)
rf,v − µ̂

(∞)
rf,v

)2
]

+ E
[(
µ̂

(∞)
rf,v − µv

)2
]
,
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so that

E

[(
µ̂

(B)
rf,v − µ

)2
]

− E
[(
µ̂

(∞)
rf,v − µv

)2
]

= E

[(
µ̂

(B)
rf,v − µ̂

(∞)
rf,v

)2
]
⩾ 0.

3. Write

µ̂
(B)

rf,v − µ̂
(∞)

rf,v = 1
Nv

∑
k∈Sm

m̂
(B)

rf,v (xk) − m̂
(∞)

rf,v (xk)
πk

,

so that

E

[(
µ̂

(B)
rf,v − µ̂

(∞)
rf,v

)2
]

= 1
N2

v

· E

( ∑
k∈Sm

m̂
(B)

rf,v (xk) − m̂
(∞)

rf,v (xk)
πk

)2
⩽

nv

N2
v

· E

 ∑
k∈Sm

(
m̂

(B)
rf,v (xk) − m̂

(∞)
rf,v (xk)

)2

π2
k


⩽
nvNv

N2
vλ

2 · max
k∈Uv

E

[(
m̂

(B)
rf,v (xk) − m̂

(∞)
rf,v (xk)

)2
]

Now, using Theorem 3.3 of Scornet (2016), there exists a positive constant C such that, uni-

formly,

E

[(
m̂

(B)
rf,v (xk) − m̂

(∞)
rf,v (xk)

)2
]
⩽

C

Bv
,

leading to

E

[(
µ̂

(B)
rf,v − µ̂

(∞)
rf,v

)2
]
⩽

CnvNv

N2
vλ

2Bv
= O

(
1
Bv

)
.

■

Proof of Result 4.2. Corollary 1 of Scornet (2016) leads to the consistency of a sequence infinite

forest estimators {m̂(∞)
urf,v}v∈N in a framework in which the dimension p is fixed. We extend their

proof to a high-dimensional asymptotic framework. To that aim, we use Stone’s Theorem, see e.g.,

Györfi et al. (2006), page 56. We begin by noting that, in our framework, verifying Stone’s theorem

conditions is enough to ensure consistency. That is, as shown by Biau et al. (2008) and Scornet

(2016), we must prove that

for all K > 0, lim
v→∞

P {Card (Av (x,Θ)) > K} = 1, (29)

for all ϵ > 0, lim
v→∞

P {diam (Av (x,Θ)) > ϵ} = 0, (30)

where diam (Av (x,Θ)) is used to denote the diameter of the hyper-rectangle Av (x,Θ), i.e., the

maximal distance between two points in the rectangle. The proof of (29) given by Scornet (2016)
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continues to hold in a high-dimensional asymptotic framework. It is thus enough to prove (30).

To that aim, let dv,j denote the length of the j-th side of the rectangle containing x, and d :=

[d1,v, d2,v, ..., dpv,v]⊤ with dj,v > 0 for all j = 1, . . . pv. Let ϵ > 0 and write

P (diam (Av (x,Θ)) > ϵ) ⩽ P (||d||2 > ϵ) ⩽ P (||d||1 > ϵ) ⩽
E
[∑pv

j=1 dj,v

]
ϵ

= pv
E [d1,v]

ϵ
,

using norms’ inequality, Markov’s inequality, and symmetry of the dimensions. Let K1,v denote the

number of times the leaf containing x has been cut along the first coordinate. Then, as noted by

Biau et al. (2008), we can use the following inequality,

E [d1,v] ⩽ E
[(

3
4

)K1,v
]

to obtain that

E [d1,v] ⩽
Kv∑
l=0

(
Kv

l

)(
3
4

)l( 1
pv

)l(
1 − 1

pv

)Kv−l

=
(

1 − 1
4pv

)Kv

.

Therefore, combining these inequalities leads to

P(diam (Av (x,Θ)) > ϵ) ⩽ pv

ϵ

(
1 − 1

4pv

)Kv

.

Hence, under our conditions, both (29) and (30) hold, leading to

lim
v→∞

E

[{
m̂(∞)

v (x) −mv(x)
}2
]

= 0.

Applying Result 8.1 gives the consistency of the infinite uniform forest estimator. Moreover, from

Proposition 4.1, we have

0 ⩽ E

[(
µ̂

(B)
urf,v − µv

)2
]

− E

[(
µ̂

(∞)
urf,v − µv

)2
]
⩽

C

Bv
.

Thus, if we consider large forests (i.e., with an increasing number of trees), the se-

quences E

[(
µ̂

(B)
urf,v − µv

)2
]

and E

[(
µ̂

(∞)
urf,v − µv

)2
]

must have the same limit. Hence,

limv→∞E
[
( µ̂ (B)

urf,v − µv)2
]

= 0, which concludes the proof. ■

Proof of Result 4.3. It follows from (Klusowski and Tian, 2024, Corollary 7.2) that, under

our conditions, the sequence {m̃(B)
brf,v}v∈N of tree predictors fitted on DNv is consistent in L2
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for m, meaning

lim
v→∞

E

[(
m̃

(∞)
brf,v(x) −mv(x)

)2]
= 0,

which is Condition i) of Result 8.1. Clearly, Condition ii) of Result 8.1 holds also in this

framework so that Result 8.1 gives the consistency of the imputed estimator based on the

infinite Breiman’s random forest. Consistency of the finite forest imputed estimator follows

from applying Proposition 4.1. ■

Proof of Proposition 5.1. By the law of iterated variance and relation (12),

V
(
µ̂

(B)
rf,v − µv

)
= V

(
EΘ

[
µ̂

(B)
rf,v − µv

])
+E

[
VΘ

(
µ̂

(B)
rf,v − µv

)]
= V

(
µ̂

(∞)
rf,v − µv

)
+E

[
VΘ

(
µ̂

(B)
rf,v − µv

)]
.

Relation (14) is proved. Next, we have

VΘ

(
µ̂

(B)
rf,v − µv

)
= VΘ

(
µ̂

(B)
rf,v

)
= VΘ

(
1
Bv

Bv∑
b=1

µ̂
(b)

tree,v

)
(4)= 1

Bv
·VΘ

(
µ̂

(1)
tree,v

)
,

where equality (4) follows from the fact that, as detailed in the proof of Proposition 7.1, conditionally

on everything but {Θb}Bv

b=1, {µ̂ (b)
tree,v}Bv

b=1 is a sequence of i.i.d. random variables. Now, for any

b ∈ {1, 2, ..., Bv},

VΘ

(
µ̂

(b)
tree,v

)
= VΘ

(
1
Nv

∑
k∈Sm

m̂
(b)

tree,v(xk)
πk

)
⩽ EΘ

( 1
Nv

∑
k∈Sm

m̂
(b)

tree,v(xk)
πk

)2 ⩽
n2

v

N2
v

(
max {|ay|, |by|} max

k∈U
dk

)2
.

This concludes the proof. ■

Proof of Proposition 7.1. Observe that

µ̂
(B)

rf,v − µ̂
(∞)

rf,v = 1
Nv

∑
k∈Sm

m̂
(B)

rf,v (xk) − m̂
(∞)

rf,v (xk)
πk

,

so that, for ϵ > 0,

PΘ

(
|µ̂ (B)

rf,v − µ̂
(∞)

rf,v | ⩾ ϵ
)

= PΘ

(∣∣∣∣ 1
Bv

Bv∑
b=1

{
1
Nv

∑
k∈Sm

m̂
(b)

tree,v(xk) − m̂
(∞)

rf,v (xk)
πk

}∣∣∣∣ ⩾ ϵ

)
.

Define d̂ (b) := 1
Nv

∑
k∈Sm

π−1
k

(
m̂

(b)
tree,v(xk) − m̂

(∞)
rf,v (xk)

)
. Note that, given the predictors, the

sample membership indicators, the survey variable, and the nonresponse indicators, the sequence

{m̂ (b)
tree,v}Bv

b=1 is a sequence of independently and identically distributed (according to PΘ) random

variables. The same holds therefore for the sequence {d̂ (b)}Bv

b=1. Moreover, in our framework, these
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are zero mean bounded random variables. To see that, recall that there exists ay < by such that

Y ∈ [ay ; by], almost surely. Hence, for all b ∈ {1, 2, ..., Bv} and k ∈ Sm,

ay − by ⩽ m̂
(b)

tree,v(xk) − m̂
(∞)
rf,v(xk) ⩽ by − ay. a.s.

Therefore,
nm,v

Nv
· ay − by

mink∈U πk
⩽ d̂ (b) ⩽

nm,v

Nv
· by − ay

mink∈Uv
πk
, a.s.

Thus, for ϵ > 0,

PΘ

(
|µ̂ (B)

rf,v − µ̂
(∞)

rf,v | ⩾ ϵ
)

= PΘ

(
1
Bv

∣∣∣∣ Bv∑
b=1

d̂ (b)
∣∣∣∣ ⩾ ϵ

)
(3)
⩽ 2 exp

 −2Bvϵ
2

4
n2

m,v

N2
v

(
by − ay

mink∈U πk

)2

 ,

where (3) follows from Hoeffding inequality for bounded random variables and the fact that d̂ (b), b =

1, . . . , Bv are i.i.d. random variables with EΘ(d̂ (b)) = 0. ■

Proof of Proposition 7.2. Let X be an arbitrary covariate among X1, X2, ..., Xp. Denote by S the

set of predictors considered (at least once) for splitting in m̂
(B)
rf,v, and Sb those considered in m̂

(b)
tree,v.

Basic graph theory reveals that, if Tb denotes the number of terminal nodes of the b-th tree m̂(b)
tree,v,

then the number of splits in m̂
(b)
tree is Tb − 1. Finally, let Pb,j denote the set of predictors considered

for splitting in the j-th split m̂(b)
tree,v. We may then write

P (X /∈ S) = P

(
Bv⋂
b=1

(X /∈ Sb)
)

= P

Bv⋂
b=1

Tb−1⋂
j=1

(X /∈ Pb,j)

 =
Bv∏
b=1

(
1 − p0

p

)Tb−1

by independence between each draw of predictors.

■

References

Abadie, A. and Imbens, G. W. (2006). Large sample properties of matching estimators for

average treatment effects. Econometrica, 74(1):235–267.

Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for model selection.

Statistics Surveys, 4:40–79.

Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learning Research,

13(Apr):1063–1095.

45



Biau, G., Devroye, L., and Lugosi, G. (2008). Consistency of random forests and other

averaging classifiers. Journal of Machine Learning Research, 9(Sep):2015–2033.

Breidt, F.-J. and Opsomer, J.-D. (2000). Local polynomial regression estimators in survey

sampling. The Annals of Statistics, 28(4):1023–1053.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and regression

trees. Chapman and Hall/CRC.

Bühlmann, P. and Yu, B. (2002). Analyzing bagging. The annals of Statistics, 30(4):927–961.

Chen, S. and Haziza, D. (2019). Recent developments in dealing with item non-response in

surveys: a critical review. International Statistical Review, 87:S192–S218.

Chen, T. and Guestrin, C. (2016). XGBoost. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining - KDD 16. ACM

Press.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., and Newey, W.

(2017). Double/debiased/neyman machine learning of treatment effects. American Eco-

nomic Review, 107(5):261–265.

Chi, C.-M., Vossler, P., Fan, Y., and Lv, J. (2022). Asymptotic properties of high-dimensional

random forests. The Annals of Statistics, 50(6):3415–3438.

Chipman, H., George, E., and McCulloch, R. (2010). BART: Bayesian additive regression

trees. The Annals of Applied Statistics, 4(1):266–298.

Dagdoug, M., Goga, C., and Haziza, D. (2023a). Imputation Procedures in Surveys Using

Nonparametric and Machine Learning Methods: an Empirical Comparison. Journal of

Survey Statistics and Methodology, 11(1):141–188.

Dagdoug, M., Goga, C., and Haziza, D. (2023b). Model-assisted estimation through random

forests in finite population sampling. Journal of the American Statistical Association,

118(542):1234–1251.

46



De Moliner, A. and Goga, C. (2018). Sample-based estimation of mean electricity consump-

tion curves for small domains. Survey Methodology, 44(2):193–214.

Devroye, L., Györfi, L., and Lugosi, G. (2013). A probabilistic theory of pattern recognition,

volume 31. Springer Science & Business Media.

Díaz-Uriarte, R. and de Andrés, S. (2006). Gene selection and classification of microarray

data using random forest. BMC Bioinformatics, 7(1):3.

Earp, M., Toth, D., Phipps, P., and Oslund, C. (2018). Assessing nonresponse in a longitu-

dinal establishment survey using regression trees. Journal of Official Statistics, 34(2):463–

481.

Fay, R. (1991). A design-based perspective on missing data variance. US Census Bureau.

Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., and Dickhaus, H. (2012). Automated

sleep stage identification system based on time–frequency analysis of a single EEG channel

and random forest classifier. Computer Methods and Programs in Biomedicine, 108(1):10–

19.

Grimm, R., Behrens, T., Märker, M., and Elsenbeer, H. (2008). Soil organic carbon concen-

trations and stocks on barro colorado island — digital soil mapping using random forests

analysis. Geoderma, 146(1-2):102–113.

Györfi, L., Kohler, M., Krzyzak, A., and Walk, H. (2006). A distribution-free theory of

nonparametric regression. Springer Science & Business Media.

Hamza, M. and Larocque, D. (2005). An empirical comparison of ensemble methods based

on classification trees. Journal of Statistical Computation and Simulation, 75(8):629–643.

Hastie, T., Tibshirani, R., and Friedman, J. (2011). The Elements of Statistical Learning:

Data Mining, Inference and Prediction. Springer, New York.

Haziza, D. (2009). Imputation and inference in the presence of missing data. In Pfeffermann,

D. and Rao, C., editors, Handbook of statistics, volume 29A, pages 215–246. Elsevier.

Haziza, D. and Vallée, A.-A. (2020). Variance estimation procedures in the presence of singly

imputed survey data: a critical review. Japanese Journal of Statistics and Data Science,

3(2):583–623.

47



Isaki, C.-T. and Fuller, W.-A. (1982). Survey design under the regression superpopulation

model. J. Amer. Statist. Assoc., 77:49–61.

Kane, M., Price, N., Scotch, M., and Rabinowitz, P. (2014). Comparison of arima and

random forest time series models for prediction of avian influenza h5n1 outbreaks. BMC

Bioinformatics, 15(1).

Kim, J. K. and Rao, J. (2009). A unified approach to linearization variance estimation from

survey data after imputation for item nonresponse. Biometrika, 96(4):917–932.

Klusowski, J. M. and Tian, P. M. (2024). Large scale prediction with decision trees. Journal

of the American Statistical Association, 119(545):525–537.

Krennmair, P. and Schmid, T. (2022). Flexible domain prediction using mixed effects random

forests. Journal of the Royal Statistical Society Series C: Applied Statistics, 71(5):1865–

1894.

Kuhn, M. (2022). caret: Classification and Regression Training. R package version 6.0-93.

Lohr, S., Hsu, V., and Montaquila, J. (2015). Using classification and regression trees

to model survey nonresponse. In Joint Statistical Meetings, Proceedings of the Survey

Research Methods Section: American Statistical Association, pages 2071–2085. American

Statistical Association Alexandria, VA, USA.

McConville, K. and Toth, D. (2019). Automated selection of post-strata using a model-

assisted regression tree estimator. Scandinavian Journal of Statistics, 46(2):389–413.

Mentch, L. and Hooker, G. (2016). Quantifying uncertainty in random forests via confidence

intervals and hypothesis tests. The Journal of Machine Learning Research, 17(1):841–881.

Michal, V., Wakefield, J., Schmidt, A. M., Cavanaugh, A., Robinson, B., and Baumgart-

ner, J. (2023). Small area estimation with random forests and the lasso. arXiv preprint

arXiv:2308.15180.

Nalenz, M., Rodemann, J., and Augustin, T. (2024). Learning de-biased regression trees and

forests from complex samples. Machine Learning, pages 1–20.

Newey, W. K. and Robins, J. R. (2018). Cross-fitting and fast remainder rates for semipara-

metric estimation. arXiv preprint arXiv:1801.09138.

48



Nobel, A. (1996). Histogram regression estimation using data-dependent partitions. The

Annals of Statistics, 24(3):1084–1105.

Opsomer, J. and Miller, C. (2005). Selecting the amount of smoothing in nonparametric

regression estimation for complex surveys. Nonparametric Statistics, 17(5):593–611.

Pfeffermann, D. and Sverchkov, M. (2009). Inference under informative sampling. In Hand-

book of statistics, volume 29, pages 455–487. Elsevier.

Phipps, P. and Toth, D. (2012). Analyzing establishment nonresponse using an interpretable

regression tree model with linked administrative data. The Annals of Applied Statistics,

pages 772–794.

Qi, Y. (2012). Random forests for bioinformatics, pages 307–323. Springer.

Quinlan, J. (1993). Combining instance-based and model-based learning. In Proceedings of

the tenth international conference on machine learning, pages 236–243.

Robinson, P. M. and Särndal, C.-E. (1983). Asymptotic properties of the generalized regres-

sion estimator in probability sampling. Sankhyā Ser. B, 45(2):240–248.
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