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Abstract

Utilizing predictive modeling at different survey stages can improve the accuracy of a

point estimator or help tackle issues such as missing values. So far, the existing literature

on predictive models for survey data has predominantly concentrated on scenarios with

low-dimensional data, wherein the number of variables is small compared to the sample

size. In this paper, assuming a linear regression model, we show that customary variance

estimators based on a first Taylor expansion or jackknife may suffer from substantial bias

in a high-dimensional setting. We explain why this is so through a mix of theoretical

and empirical investigations. We propose some bias-adjusted variance estimators and

show, theoretically and empirically, that the proposed variance estimators perform well

in terms of bias, even in a high-dimensional setting.

Key words: Bias-adjusted variance estimator; Generalized regression estimator; Jackknife variance

estimation; Linear regression imputation; Taylor-based variance estimator.

1 Introduction

Predictive modeling can be applied at various stages of a survey to enhance the precision

of a point estimator and to address the problem of missing values, among others. Using

predictive models enables us to exploit a relationship between a survey variable Y and a
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set of predictors X1, X2, . . . , Xp. For instance, model-assisted estimation procedures use a

set of predicted values to improve the efficiency of point estimators; e.g., see Särndal (1992)

and Breidt and Opsomer (2017). To mitigate the potential nonresponse bias caused by item

nonresponse, it is common practice to employ some form of imputation, which involves gen-

erating a set of predictions to substitute for the missing values; e.g., see Haziza (2009) and

Chen and Haziza (2019).

The literature on predictive models for survey data has primarily focused on low-dimensional

data settings, where the number of variables p is small relative to the sample size n. Formal-

ized mathematically, it means that p/n → 0. Some notable exceptions include Cardot et al.

(2017), Ta et al. (2020), Chauvet and Goga (2022) and Dagdoug et al. (2022). With the

advent of big data sets, moderate to high-dimensional settings are becoming more prevalent.

In this article, a high-dimensional setting refers to a situation where the number of predictors

p is of the same magnitude as the sample size n so that p/n→ κ ∈ (0, 1).

High-dimensional linear regression models pose some challenges compared to traditional linear

regression models with fewer predictors. In this paper, we focus on variance estimation, an

important aspect for national statistical offices, which routinely produce measures such as

the coefficient of variation for point estimates or confidence intervals. This work constitutes a

first step in understanding the behavior of common variance estimators in high-dimensional

settings. We show that the common variance estimation procedures tend to break down when

p/n→ κ ∈ (0, 1) > 0. Specifically, variance estimators based on first-order Taylor expansions

tend to underestimate the variance of point estimators, while resampling procedures, such

as the jackknife and bootstrap, may substantially overestimate the true variance. In a low

dimensional setting, resampling methods in surveys are discussed in Wolter (2007), Mashreghi

et al. (2016), Wang et al. (2022), and Stefan and Hidiroglou (2024).

The contributions of this paper are as follows: (i) We explain why variance estimators based
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on first-order Taylor expansions and jackknife variance estimators tend to break down, using a

mix of empirical and theoretical investigations. We consider two distinct setups involving the

customary linear regression model: (a) the model-assisted estimation framework, utilizing the

generalized regression estimator (see, e.g., Särndal, 1980; Särndal, 1992; Särndal, 2007); and

(b) the deterministic linear regression imputation framework (e.g., Chen and Haziza, 2019).

(ii) In the context of Bernoulli sampling and simple random sampling without replacement,

we propose bias-adjusted variance estimators, that are shown to work well, at least in our

experiments.

We adopt the following notations. Let U := {1, 2, ..., N} be a finite population of size N .

Our interest lies in estimating the finite population mean

µy :=
1

N

∑
k∈U

yk,

of a survey variable Y , where yk denotes the y-value attached to unit k. We select a sample,

S, of (expected) size n, according to a probability sampling design P(S | Z), where Z ∈ RN×d

denotes the matrix of design information. We restrict our attention to non-informative sam-

pling designs; see, e.g., Pfeffermann and Sverchkov (2009). The sample S is fully characterized

by the vector of sample selection indicators, I := [I1, I2, . . . , IN ]
⊤, where Ik := 1 if k ∈ S,

and Ik := 0, otherwise. We denote by πk := P (Ik = 1) > 0 and πkℓ := P (Ik = 1, Iℓ = 1) > 0,

for k, ℓ ∈ U , the first-order and the second-order inclusion probabilities, respectively.

2 Linear prediction in survey sampling

We consider the customary linear regression model:

yk = x⊤
k β + ϵk, k ∈ U, (1)

where β is a p-vector of unknown coefficients and the errors ϵk are independent and identi-

cally distributed variables such that E [ϵk|xk] = 0, and E
[
ϵ2k|xk

]
:= σ2 <∞. We assume that

the intercept is included in the covariates; i.e., the first component of xk is 1 for all k ∈ U .
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Although we assume a homoscedastic variance structure, our results can be extended to the

case of a heteroscedastic variance structure.

Below, we use the notation yS ∈ Rns and XS ∈ Rns×p to denote the vector of y-values and

the design matrix corresponding to the sample, respectively. Also, we use ΠS ∈ Rns×ns to

denote a diagonal matrix, whose k-th diagonal element is πk.

2.1 Model-assisted estimation

In this section, we assume that the observed data are given by

Dma := {(xk, yk) ; k ∈ S} .

In addition, we assume that the vector of population totals,

tx :=

[∑
k∈U

xk1,
∑
k∈U

xk2, ...,
∑
k∈U

xkp

]⊤
,

is available from an external source. The Generalized REGression (GREG) estimator of µy

is defined by

µ̂greg :=
1

N

(∑
k∈U

x⊤
k β̂S +

∑
k∈S

yk − x⊤
k β̂S

πk

)
, (2)

where

β̂S =
(
X⊤

SΠ
−1
S XS

)−1
XSΠ

−1
S yS

is the weighted least squares estimator of β:

β̂S := argmin
β∈Rp

∑
k∈S

(
yk − x⊤

k β
)2

πk
. (3)

Throughout the paper, we assume, for simplicity, that the p×p matrix, AΠS := X⊤
SΠ

−1
S XS ,

is non-singular.
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In our setting, the GREG estimator can be written in the so-called projection form:

µ̂greg =
1

N

∑
k∈U

x⊤
k β̂S

since ∑
k∈S

π−1
k ϵ̂kS = 0,

where ϵ̂kS := yk − x⊤
k β̂S denotes the sample residual attached to unit k ∈ S, (Särndal et al.,

1992, Chapter 6).

In this section, as the reference distribution for studying the properties of variance estimators,

we use the joint distribution induced by the superpopulation model (1) and the sampling

design. Consider the following decomposition:

Vmp (µ̂greg) = Em [Vp (µ̂greg)] +Vm (Ep [µ̂greg]) , (4)

where the subscripts p and m are used to denote the sampling design and the model, respec-

tively.

Based on (4), an estimator of the variance of µ̂greg based on a first-order Taylor expansion is

given by

V̂tay =
1

N2

∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

ϵ̂kS
πk

ϵ̂ℓS
πℓ

+
σ̂2

N
, (5)

where σ̂2 is defined by

σ̂2 =
1

ns − p

∑
k∈S

(yk − x⊤
k β̂S)

2. (6)

The first term on the right side of (5) is the focus of this article. Indeed, the noise variance

estimator σ̂2 in (6) is unbiased for any values of p and n. In view of that, in our proofs, we

assume without loss of generality that σ2 is known.
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As an alternative to the first term on the right side of (5), Särndal et al. (1989) advocated

the use of a g-weighted version, leading to

V̂g =
1

N2

∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

gk ϵ̂kS
πk

gℓϵ̂ℓS
πℓ

+
σ̂2

N
, (7)

where

gk := 1 +
(
tx − t̂x,π

)⊤
A−1

ΠSxk, k ∈ S, (8)

is the so-called g-weight attached to unit k ∈ S, with t̂x,π denoting the Horvitz-Thompson

estimator of tx. Since the intercept is included in the model and the variance structure is

assumed to be homoscedastic, the g-weight in (8) reduces to

gk = t⊤xA
−1
ΠSxk, k ∈ S. (9)

Jackknife variance estimation for the GREG estimator has been discussed in Yung and Rao

(1996), Duchesne (2000) and Valliant (2002), among others. Here, we consider the generalized

jackknife variance estimator of Campbell (1980) and Berger and Skinner (2005). Let h̃πkk :=

x⊤
kA

−1
ΠSdkxk be the survey weighted leverage of element k ∈ S, with dk = π−1

k . The next

proposition gives a closed-form expression of the generalized jackknife variance estimator in

the case of the GREG estimator.

Proposition 2.1. An estimator of (4) based on the generalized jackknife variance estimator

of Berger and Skinner (2005) has a closed-formed formula given by

V̂jack =
1

N2

∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

(1− wk) gk ϵ̂kS(
1− h̃πkk

)
πk

(1− wℓ) gℓ ϵ̂ℓS(
1− h̃πℓℓ

)
πℓ

+
σ̂2

N
, (10)

where wk := (Nπk)
−1 for k ∈ S.

Proof. See Appendix B.1. ■

2.2 Deterministic linear regression imputation

Predictions based on a linear regression model are also used in the context of imputation for

item nonresponse. In this context, the survey variable Y is observed only for a subset Sr ⊆ S,
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called the set of respondents to item Y . We denote by Sm = S−Sr the set of nonrespondents

to item Y . Let R := [R1, R2, . . . , RN ]
⊤ be the N -vector of response indicators, where Rk = 1

if k ∈ Sr, and Rk = 0, otherwise. Here, the predictors X1, . . . , Xp, are assumed to be

available for both the respondents and the nonrespondents. We assume that: (i) The data

{(xk, yk, rk)}k∈U are identically and independently distributed; (ii) The data are Missing At

Random (Rubin, 1976, MAR):

P (Rk = 1|xk, yk) = P (Rk = 1|xk) ;

(iii) The positivity assumption is satisfied; i.e., P (Rk = 1|xk) > 0, almost surely. Available

to the imputer are the data

Dimp := {(xk, yk) ; k ∈ Sr}
⋃

{xk ; k ∈ Sm} .

Imputation involves estimating the relationship between Y and X1, . . . , Xp based on the

respondents and applying this relationship to the nonrespondents.

An estimator of µy after deterministic linear imputation is given by

µ̂lr :=
1

N̂

∑
k∈S

ỹk
πk
, (11)

where N̂ :=
∑

k∈S π
−1
k and ỹk := Rkyk + (1−Rk)x

⊤
k β̂R with

β̂R =

∑
k∈Sr

xkx
⊤
k

πk

−1 ∑
k∈Sr

xkyk
πk

=
(
XRΠ

−1
R X⊤

R

)−1
XRΠ

−1
R yR (12)

denoting the weighted least squares estimator of β:

β̂R := argmin
β∈Rp

∑
k∈Sr

(
yk − x⊤

k β
)2

πk
.

In (12), the quantities XR, ΠR and yR correspond to the counterparts of XS , ΠS and yS ,

respectively, restricted to the set of respondents Sr.
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To estimate the variance of µ̂lr, we consider the reverse framework, originally proposed by

Fay (1991) and Shao and Steel (1999); see also Kim and Rao (2009) and Haziza and Vallée

(2020). Using this framework, the total variance of µ̂lr can be expressed as

V(µ̂lr) = EmEqVp(µ̂lr) + EqVmEp(µ̂lr − µy), (13)

where the subscript q denotes the nonresponse mechanism. Let us define ĥπkℓ := x⊤
kA

−1
ΠRdℓxℓ

and Γ̂k :=
∑

ℓ∈Sm
ĥπkℓ, where AΠR := X⊤

RΠ
−1
R XR. Again, we assume that the matrix AΠR

is non-singular.

Proposition 2.2. An estimator of the variance of µ̂lr based on a first-order Taylor expansion

is given by

V̂I,tay =
1

N̂2

∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

ξ̂k − µ̂lr
πk

ξ̂ℓ − µ̂lr
πℓ

+
σ̂2

N̂2

∑
k∈Sr

1

πk

{
1−Rk(1 + Γ̂k)

}2
, (14)

where

σ̂2 =
1

nr − p

∑
k∈Sr

(yk − x⊤
k β̂R)

2. (15)

and

ξ̂k := ỹk +RkΓ̂k ϵ̂kR (16)

with ϵ̂kR = yk − x⊤
k β̂R, k ∈ Sr.

The proof of Proposition 2.2 is straightforward and is thus omitted. We use a slight abuse of

notation here: σ̂2 in (15) is different than that of (6); the former is to be used in a nonresponse

framework while the latter should be used with a model-assisted framework.

We now turn to jackknife variance estimation in the context of deterministic linear regression.

Berger and Rao (2006) extended the results of Berger and Skinner (2005) to the case of mean

and ratio imputation. We extend the results of Berger and Rao (2006) to the more general

setting of deterministic linear regression imputation.
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Result 2.1. The estimator of the variance of µ̂lr based on the generalized jackknife variance

estimator of Berger and Rao (2006) has a closed-form expression given by

V̂I,jack =
1

N̂2

∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

µ̂lr − ξ̂
(jk)
k

πk

µ̂lr − ξ̂
(jk)
ℓ

πℓ
+
σ̂2

N̂2

∑
k∈Sr

1

πk

{
1−Rk(1 + Γ̂k)

}2
, (17)

where

ξ̂
(jk)
k := ỹk +RkΓ̂k

ϵ̂kR

1− ĥπkk
. (18)

Proof. See Appendix B.2. ■

3 Behavior of some commonly used variance estimators: Em-

pirical studies

In this section, we present the results of two simulation studies. In Section 3.1, we first ex-

amine the empirical performance of the variance estimators described in Section 2.1, whereas

Section 3.2 considers the variance estimators discussed in Section 2.2. In the model-assisted

setup, we denote by κ = p/n, the ratio of the number of predictors to the expected sample

size. In the linear regression imputation setup, we denote by κ = p/E[nr], the ratio of the

number of predictors to the expected number of respondents.

3.1 Model-assisted estimation: the GREG estimator

We generated a finite population U of size N = 5, 000 consisting of 203 explanatory variables

X1, . . . , X203, and a survey variable Y . The variables X1, . . . , X203, were generated from a

multivariate normal distribution with a mean vector equal to 5× 1⊤ and correlation matrix,

whose diagonal elements were equal to 1 and off-diagonal elements equal to 0.3, where 1

denotes the vector of ones. Given theX-variables, we generated a survey variable Y according

to the linear regression model

yk = 14− 4x1k + 3x2k + 4x3k + ϵk, (19)

where the errors ϵk were generated from a normal distribution with mean equal to 0 and

variance equal to 20. This led to a model R2 approximately equal to 0.6. In (19), note that
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only the first three variables X1, X2, and X3 were used for generating the Y -variable.

From the population, we selected R = 10, 000 samples of (expected) sample size n = 300,

according to two sampling designs: simple random sampling design without replacement and

Bernoulli sampling. In each sample, we computed several GREG estimators, µ̂greg, given

by (2), based on different sets of explanatory variables. In addition to X1, X2 and X3, we

included several noise variables denoted by pnoise. The values for pnoise were set to: 0, 20, 40,

60, 80, 100, 120, 140, 160, 180, and 200. This led to 12 estimators, µ̂greg, of µy. To estimate

the variance of µ̂greg, we computed V̂tay given by (5), V̂g given by (7), and V̂jack given by (10).

As a measure of bias of a variance estimator, we computed its Monte Carlo percent rela-

tive bias (RB). Using the generic notations µ̂ and V̂ for a point and a variance estimator,

respectively, the RB of V̂ is defined as

RB(V̂ ) := 100× 1

R

R∑
r=1

V̂ (r) − VMC (µ̂)

VMC (µ̂)
, (20)

where VMC (µ̂) denotes the Monte-Carlo variance of µ̂ and V̂ (r) denotes the estimator V̂ at

the rth iteration, r = 1, . . . , 10, 000. The results of Bernoulli sampling and for simple random

sampling without replacement are shown in Figures 1 and 2, respectively.

From Figures 2 and 1, we note that the three variance estimators performed well for small

values of κ. For instance, for κ = 3/300, which corresponds to the case of pnoise = 0, the

estimator V̂tay exhibited a value of RB of about -1.7% for Bernoulli sampling and −0.7% for

simple random sampling without replacement. The g-weighted version V̂g showed a bias of

-0.6% for Bernoulli sampling and of 0.2% for simple random sampling without replacement.

The jackknife variance estimator V̂jack showed a bias of about 2.0% for Bernoulli sampling

and 2.8% for simple random sampling without replacement. However, for κ = 83/300 ≈ 0.28,
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the RB of V̂tay was equal to -46% in the case of Bernoulli sampling and -44.7% in the case

of simple random sampling without replacement. The magnitude of the underestimation got

worse as p/n increased. The g-weighted version V̂g did better than V̂tay with a value of RB

equal to -28% for Bernoulli sampling, and equal to -26.3% for simple random sampling with-

out replacement. On the other hand, the jackknife variance estimator exhibited significant

overestimation with values of RB equal to 36.5% in the case of Bernoulli sampling and 38.8%

in the case of simple random sampling without replacement. The magnitude of the bias

increased as κ increased.
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Figure 1: Behaviour of three variance estimators for µ̂greg under Bernoulli sampling.

3.2 Deterministic linear regression imputation

We started by generating 5, 000 realizations of a vector of explanatory variables, of size 103,

from a multivariate normal distribution with a mean vector equal to 5× 1⊤ and correlation

matrix, whose diagonal elements were equal to 1 and the off-diagonal elements were equal to

0.3. We then repeated R = 10, 000 iterations of the following process:

(i) Given the explanatory variables, we generated the survey variable Y according to Model

(19).
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Figure 2: Behaviour of three variance estimators for µ̂greg under simple random sampling
without replacement.

(ii) From the finite population of size N = 5, 000 generated in Step (i), a sample, of

(expected) size n = 300, was selected according to (1) simple random sampling without

replacement and (2) Bernoulli sampling.

(iii) In each sample, the response indicators {Rk}k∈S , were independently generated accord-

ing to a Bernoulli distribution with probability

pk = {1 + exp(1 + λ1x1k + λ2x2k + λ3x3k)}−1 ,

where the values of λ1, λ2, and λ3 were set to obtain an overall response rate of about

50%. Thus, in each sample, the expected number of respondents, E(nr), was equal to

150.

(iv) The missing values in each sample were imputed through deterministic linear regression

imputation with different subsets of explanatory variables. The first subset of explana-

tory variables included the variables X1, X2, and X3 only, corresponding to the true

model. In addition to X1, X2 and X3, we included several noise variables denoted by

pnoise. This led to 12 sets of explanatory variables of size p, where p = pnoise + 3. The

values for pnoise were set to: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110. As a result
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the ratio κ = p/E(nr) ranged from 3/150 to 103/150. Each of the 12 models was fitted

on the set of responding units, which led to 12 sets of imputed values.

(v) For each of the 12 sets of imputed values, we computed the imputed estimator µ̂lr given

by (11), leading to a set of 12 imputed estimators.

(vi) We estimated the variance of the 12 imputed estimators using two variance estimators:

(i) The variance estimator based on a first-order Taylor expansion denoted by V̂I,tay; see

Section 2.2; and (ii) The generalized jackknife variance estimator, denoted by V̂I,jack;

see Section 2.2.

As a measure of relative bias of a variance estimator V̂ , we computed its Monte Carlo percent

relative bias (RB) given by (20).

From Figures 3 and 4, we note that both V̂I,tay and V̂I,jack performed well for small values

of κ. For instance, for κ = 3/150, which corresponds to the case of pnoise = 0, the estimator

V̂I,tay exhibited a value of RB of about -5.7% for Bernoulli sampling and -4.6% simple random

sampling without replacement. The jackknife variance estimator performed well with values

of RB equal to -4.1% for Bernoulli sampling and 3% for simple random sampling without

replacement. However, for larger values of κ both variance estimators did not perform well.

For instance, for κ = 33/150 ≈ 0.29, the estimator V̂I,tay underestimated the true variance

with values of RB equal to -14.3% for Bernoulli sampling and -12.8% for simple random

sampling without replacement. On the other hand, the estimator V̂I,jack was 10.4% too large

for Bernoulli sampling and 12% too large for simple random sampling without replacement.

Again, the magnitude of the bias increased significantly as κ increased.
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Figure 3: Behaviour of two variance estimators for µ̂lr under Bernoulli sampling.
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Figure 4: Behaviour of two variance estimators for µ̂lr under simple random sampling without
replacement.

3.3 Explaining the behavior of classical variance estimators

In the context of both model-assisted estimation and deterministic linear regression imputa-

tion, the customary linearization variance estimators and jackknife variance estimators tend

to breakdown when p/n→ κ ∈ (0, 1) (or p/E[nr] → κ ∈ (0, 1), respectively). In this section,

we explain why this is the case. For simplicity, we confine to the case of model-assisted esti-
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mation under simple random sampling without replacement. Arguments similar to the ones

below can also be used to explain the behavior of variance estimators under deterministic

linear regression imputation.

The variance estimator based on a first-order Taylor expansion given by (5) involves the

sample residuals ϵ̂kS . It turns out that, in a high-dimensional setting, the distribution of the

sample residuals ϵ̂kS is not a good approximation of the distribution of the errors ϵk in (1).

In particular, we have

Vm(ϵ̂kS) = σ2(1− h̃kk), k ∈ S,

where h̃kk denotes the k-th diagonal element of the hat matrix XS

(
X⊤

SXS

)−1
X⊤

S . The

validity of classical variance estimators relies on the assumption that h̃kk → 0 as n and N go

to infinity. In a high-dimensional setting, this assumption no longer holds, as it can be shown

that h̃kk → p/n for a wide class of distributions for the design matrix XS (e.g., the multi-

variate normal distribution); see e.g., El Karoui and Purdom (2018), Pajor and Pastur (2009)

and Karoui and Koesters (2011) for a discussion and Portnoy (1987) for a proof with elliptical

distributions; see Section 4 for a more rigorous treatment, and Appendix A.4 for empirical

results on the behavior of the leverages for commonly encountered distributions. Therefore,

the variance of the sample residuals ϵ̂kS is approximately equal to σ2(1− p/n) ≡ σ2(1− κ),

which can be considerably smaller than σ2 for large values of κ. This, in turn, explains why

the variance estimator based on a first-order Taylor expansion tends to underestimate the

true variance of µ̂greg for large values of κ.

Turning to generalized jackknife variance estimators, we note from (10) that it involves the

residuals ϵ̂ (k)
kS = ϵ̂kS/(1− h̃kk). Since

Vm

(
ϵ̂

(k)
kS

)
=

σ2

1− h̃kk
≃ σ2

1− p
n

≡ σ2

1− κ
, k ∈ S,

the variance of ϵ̂ (k)
kS may be considerably larger than σ2 for large values of κ. As a result, the
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generalized jackknife variance estimator tends to overestimate the true variance of µ̂greg for

large values of κ.

4 Bias: Model-assisted estimation

In this section, we provide a theoretical analysis of the bias of variance estimators for the

GREG estimator in a high-dimensional setting. For simplicity, we confine to the case of

Bernoulli sampling.

We consider the asymptotic framework of Isaki and Fuller (1982). We consider an increasing

sequence of finite populations {Uv}v∈N, of sizes {Nv}v∈N, such that Uv ⊂ Uv+1, for all v ∈

N. From Uv, a sample Sv is selected according to the sampling design Pv ( · , Zv). The

first and second-order inclusion probabilities of Pv ( · , Zv) are denoted by {πk,v}k∈Uv and

{πkℓ,v}k ̸=ℓ∈Uv , respectively. The asymptotic sampling fraction is given by limv→∞ nv/Nv :=

π∗. For ease of notation, the subscript v will be omitted whenever possible. For two sequences

{av}v∈N ⊂ R and {bv}v∈N ⊂ R, we write av ≃ bv to express that they have the same limit,

i.e., limv→∞ av/bv = 1. We write av ≲ bv if limv→∞ av ⩽ limv→∞ bv; the symbol ≳ is defined

similarly. We extend these definitions to sequences of random variables where the limit is to

be understood in probability. Moreover, asymptotic order notations are to be understood in

a high-dimensional framework, whereby limv→∞ pv/nv := κ∗ ∈ [0; 1).

In this article, inference is made conditionally on the predictors. Below, we will refer to the

following conditions:

(H1W) The design matrix XS is such that, there exists a continuous function f1 : [0; 1) →

[0; 1) such that, for all v ∈ N,

min
k∈Sv

h̃kk ⩾ f1

(
pv
nv

)
,

where f satisfies f1(0) = 0 and f1(x) > 0 for x > 0.
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(H1S) The design matrix XS is such that,

max
k∈Sv

∣∣∣∣h̃kk − pv
nv

∣∣∣∣ = oP (1) .

Assumptions (H1W) and (H1S) pertain to the high-dimensional behavior of the leverages

that generally depend on the distribution of the covariates. Assumption (H1W) is weaker

than assumption (H1S); it states that the smallest leverage remains bounded away from zero

whenever κ∗ > 0; because the intercept is included in the covariates, Assumption (H1W) is

necessarily satisfied in finite samples since h̃kk > 1/n . On the other hand, assumption (H1S)

assumes that, uniformly, leverages converge to κ. Assumption (H1S) implies (H1W) with f1

being the identity. We refer to Appendix A.4 for an empirical investigation of (H1W) and

(H1S) for some common distributions.

Before stating our next result, we introduce the following notation. For an arbitrary set of

elements {ak}k∈B with index set B ⊆ U , we write En,B [a] :=|B|−1
∑

k∈B ak to denote its

empirical mean.

Result 4.1. Consider a Bernoulli sampling design.

i) If the superpopulation model is linear, the model variance Vm (µ̂greg,v) is unbiased for

the unconditional variance V (µ̂greg,v), that is,

Ep [Vm (µ̂greg,v)] = V (µ̂greg,v) .

Moreover, if limv→∞Vp (gk,v) = 0, for all k, then Vm (µ̂greg,v) and V (µ̂greg,v) are

asymptotically equivalent, that is,
Vm (µ̂greg,v)

V (µ̂greg,v)

P−−−→
v→∞

1.

ii) The relative bias factor of V̂tay,v, V̂g,v and V̂jack,v, defined respectively by (5), (9) and

(10), are given by

Em

[
V̂tay,v

]
Vm (µ̂greg,v)

≃ (1− π∗)
(1− κ∗)

En,U [g]
+

π∗

En,U [g]
, (21)
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Em

[
V̂g,v

]
Vm (µ̂greg,v)

≃ (1− π∗)

1−
En,S

[
g2h̃
]

En,U [g]

+
π∗

En,U [g]
, (22)

and

Em

[
V̂jack,v

]
Vm (µ̂greg,v)

≃ (1− π∗)
En,S

[
g2/

(
1− h̃

)]
En,U [g]

+
π∗

En,U [g]
. (23)

Proof. See Appendix B.3. ■

Part i) of Result 4.1 shows that the model variance of the GREG estimator is unbiased and

consistent for the unconditional variance, provided that the linear regression model holds. For

p fixed, the GREG estimator attains the Godambe-Joshi lower bound (Särndal et al., 1992,

Chapter 12). Part i) also holds for general sampling designs, under appropriate assumptions

on higher-order inclusion probabilities. Part ii) of Result 4.1 confirms the results of Section

3; that is, the variance estimators based on a first-order Taylor expansion lead to substantial

underestimation for large values of κ, whereas the generalized jackknife variance estimators

leads to substantial over-estimation of the true variance.

Remark 4.1. The behavior of the g-weights {gk}k∈U significantly impacts the high-

dimensional behavior of the variance estimators. Indeed, if pv is either fixed (or slowly

increases with respect to nv), it can be shown that, uniformly in k,

gk
P−−−→

v→∞
1.

We conjecture that this result may not hold for general covariates settings within a high-

dimensional framework for which κ > 0. Assumption in Result 4.1 that limv→∞Vp (gk,v) = 0

is much weaker as it only requires that this limit to be degenerate.

Corollary 4.1. Consider a Bernoulli sampling design with π∗ = 0.
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i) Under (H1W), Expressions (21)-(23) reduce to

Em

[
V̂tay,v

]
Vm (µ̂greg,v)

≃ (1− κ∗)

En,U [g]
, (24)

Em

[
V̂g,v

]
Vm (µ̂greg,v)

≃ 1−
En,S

[
g2h̃
]

En,U [g]
≲ 1− f1 (κ∗) ,

Em

[
V̂jack,v

]
Vm (µ̂greg,v)

≃
En,S

[
g2/

(
1− h̃

)]
En,U [g]

≳
1

1− f1 (κ∗)
.

ii) Under (H1S), Expressions (22)-(23) reduce to

Em

[
V̂g,v

]
Vm (µ̂greg,v)

≃ 1− κ∗, (25)

Em

[
V̂jack,v

]
Vm (µ̂greg,v)

≃ 1

1− κ∗
. (26)

Proof. See Appendix B.4. ■

When κ∗ > 0, under (H1W), the variance estimators V̂g and V̂jack are biased and inconsis-

tent. Under the stronger assumption (H1S), their expression of asymptotic bias reduces to a

simpler expression that depends on κ∗ only. Interestingly, under (H1S) and π∗ = 0, the bias

of V̂jack matches the bias found in El Karoui and Purdom (2018) in the context of jackknife

variance estimation of a prediction for a linear regression model.

We end this section by suggesting simple bias-adjusted variance estimators in the context of

a high-dimensional setting. For a small sampling fraction, Expressions (24)-(26) motivates

the following bias-adjusted version of V̂tay, V̂g and V̂jack. They are respectively given by

V̂
(adj)
tay,v =

En,U [g]

1− κ
× V̂tay,v, (27)

19



V̂ (adj)
g,v =

1

1− κ
V̂g,v, (28)

and

V̂
(adj)
jack,v = (1− κ) V̂jack,v. (29)

Under (H1S), the bias-adjusted estimators (24)-(26) are asymptotically unbiased for all values

of κ, and can be implemented using the observed data.

5 Bias: Deterministic linear regression imputation

In this section, we study the behavior of several variance estimators in the context of deter-

ministic linear regression imputation in a high-dimensional setting. To that aim, consider

the following class of variance estimators:

V :=

{
V̂ (ψ) :=

1

N̂2

∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

µ̂lr − ξ̂
(ψ)
k

πk

µ̂lr − ξ̂
(ψ)
ℓ

πℓ
+
σ2

N̂2

∑
k∈Sr

1

πk

{
1−Rk(1 + Γ̂k)

}2
;

with ξ̂
(ψ)
ℓ := ỹk + rkψ(XR)Γ̂k ϵ̂kR, for some ψ : Rnr×p → R

}
. (30)

The class of variance estimators V includes, as special cases, the variance estimators (14) and

(17) with ψ(XR) = 1 and ψ(XR) =
(
1− ĥkk

)−1
, respectively. It also includes the variance

estimator obtained by adjusting the residuals ϵ̂kR using the rescaling factor (1 − ĥkk)
−1/2;

see e.g., El Karoui and Purdom (2018). This variance estimator, which we call the corrected

variance estimator, corresponds to the choice ψ(XR) = (1− ĥkk)
−1/2. The rationale behind

this choice is to recover the variance of the model errors ϵk. Finally, we denote by Ṽ the

subset of V where the functions ψ are constants, independent of XR.

The following result exhibits the asymptotic bias of any variance estimator belonging to the

class V.

Result 5.1. Consider a Bernoulli sampling design and let V̂ (ψ) be an arbitrary variance
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estimator belonging to the class V with functions {ψv}v∈N. Then,

Em

[
V̂

(ψ)
v

]
Em

[
V̂ (µ̂lr,v)

] ⋍
[1− π]

∑
k∈S Bk + σ2Aψ

[1− π]
∑

k∈S Bk + σ2Atheo
,

where

Aψ := (1− π)

nr + ∑
k∈Sm

ĥkk +

∑
k∈Sr

(
1− ĥkk

)
ψ(XR)Γk {2 + ψ(XR)Γk}

+ π

nm +
∑
k∈Sr

Γ2
k

 ,

Atheo := (1− π) (ns − 1) + nm +
∑
k∈Sr

Γ2
k,

with

Bk :=
1

ns

∑
ℓ∈S

{
(x⊤
ℓ β)

2 − x⊤
k βx

⊤
ℓ β
}
. (31)

Proof. See Appendix B.5. ■

Although Result 5.1 does not require any assumption on the covariates, it is somewhat

difficult to draw a clear interpretation from it, aside from the fact that the asymptotic bias of

the jackknife variance estimator is always non-negative. Unfortunately, under (H1W), Result

5.1 does not become any easier to interpret. In order to provide more insight about Result

5.1, we reformulate Assumption (H1S).

(H1S’) The design matrix XR is such that,

max
k∈Sr,v

∣∣∣∣ĥkk − pv
nr,v

∣∣∣∣ = oP (1) .

In the case of a negligible sampling fraction, Corollary 5.1 below exhibits the relative biases

of the variance estimators (14) and (17) as well as the corrected variance estimator obtained

with ψ(XR) = (1− ĥkk)
−1/2 and denoted by V̂cor.
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Corollary 5.1. Consider a Bernoulli sampling design with π∗ = 0 and assume (H1S’).

Em

[
V̂I,tay,v

]
Em

[
V̂ (µ̂lr,v)

] − 1 ⋍

∑
k∈Sm

ĥkk − κ∗
(
2nm +

∑
k∈Sr

Γ2
k

)∑
k∈S Bk/σ

2 +
(
nr + 2nm +

∑
k∈Sr

Γ2
k

) , (32)

Em

[
V̂I,jack,v

]
Em

[
V̂ (µ̂lr,v)

] − 1 ⋍

∑
k∈Sm

ĥkk +
κ∗

1−κ∗
∑

k∈Sr
Γ2
k∑

k∈S Bk/σ
2 +

(
nr + 2nm +

∑
k∈Sr

Γ2
k

) , (33)

and

Em

[
V̂I,cor,v

]
Em

[
V̂ (µ̂lr,v)

] − 1 ⋍

∑
k∈Sm

ĥkk − 2nm
(
1−

√
1− κ∗

)∑
k∈S Bk/σ

2 +
(
nr + 2nm +

∑
k∈Sr

Γ2
k

) . (34)

Note that the terms on the right-hand side of (32)-(34) have the same denominator. Since∑
k∈S Bk ≥ 0, it follows that the sign of the bias in (32)-(34) depends on the sign of the

numerator. In the case of V̂I,tay, the sign of the numerator is expected to be negative, and

the bias may be substantial for large values of κ. It follows from (33) that the bias of V̂I,jack

is positive. Noting that κ/(1− κ) is monotonically increasing in κ ∈ (0, 1), the bias of V̂I,jack

is expected to be large for large values of κ. Finally, looking at Expression (34), we expect

the bias of V̂I,cor to be small to moderate as the term 1−
√
1− κ lies between 0 and 1.

Expressions (32)-(34) may be used to derive bias-adjusted versions of V̂I,tay, and V̂I,jack. Note

that all the terms but Bk and σ2 on the right side of (32)-(34) can be computed using the

data at hand. An estimator of Bk is obtained by replacing β in (31) by its weighted least

square estimator given by (12). Also, a model-unbiased estimator of σ2 is given by (15).

In Section 6.2, the bias-adjusted versions of V̂I,tay and V̂I,jack will be denoted by V̂ (adj)
I,jack and

V̂
(adj)
I,tay , respectively.

Remark 5.1. The numerators on the right side of (32)-(34) all include the term
∑

k∈Sm
ĥkk,

which is a function of the predictors for both the respondents and the nonrespondents. Its
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magnitude heavily depends on the type of nonresponse mechanism, which is unknown. Indeed,

when p is fixed, it can be shown that

∑
k∈Sm

ĥkk ≃ lim
v→∞

nm,v
nr,v

× tr
(
E
[
x1x

⊤
1 |R1 = 1

]−1
E
[
x1x

⊤
1 |R1 = 0

])
.

As a result, unless the data are Missing Completely At Random, it is generally not possible

to establish a general result about the magnitude of
∑

k∈Sm
ĥkk.

We end this section by determining the coefficients ψ(XR) in (30) that produce an asymp-

totically unbiased variance estimator. This is given in the next result.

Result 5.2. Recall that Ṽ denotes the subset of V where the functions ψ are constants and

assume a Bernoulli sampling design. Consider the following notation additional notation:

A :=
∑
k∈Sr

(
1− ĥkk

)
Γ̂2
k,

B := 2
∑
k∈Sm

(
1− ĥkk

)
Γ̂k,

C :=
∑
k∈Sm

ĥkk − 2nm −
∑
k∈Sr

Γ̂2
k.

Then, there exist asymptotically unbiased variance estimators in Ṽ for all values of κ if and

only if ∆ := B2− 4AC ⩾ 0. Assuming this condition is satisfied, the asymptotically unbiased

estimators are identified by the following roots:

ψ1(XR) :=
−B −

√
B2 − 4AC

2A
, (35)

and

ψ2(XR) :=
−B +

√
B2 − 4AC

2A
. (36)

Proof. See Appendix B.6. ■

Note that the roots ψ1(XR) and ψ2(XR) can be readily computed using the data at hand.

Result 5.2 does not require any assumption on the leverage. If one is willing to assume (H1S),
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then A and B reduce to

A = (1− κ∗)
∑
k∈Sr

Γ̂2
k, B = 2 (1− κ∗)nm,

respectively.

Remark 5.2. If the discriminant ∆ := B2−4AC is negative, no estimator in Ṽ , computable

from observed data, is unbiased for this particular realization. One may then choose the

midpoint ψ := −B/2A which, when ∆ < 0, minimizes the absolute relative bias.

6 Empirical behavior of bias-adjusted estimators

In this section, we present the results from a simulation study assessing the performance of

several variance estimators and their associated bias-adjusted version in terms of relative bias.

In Section 6.1, we consider the model-assisted estimation setup, while Section 6.2 discusses

the linear regression imputation setup.

6.1 Bias-adjusted variance estimators: Model-assisted estimation

We used the same simulation setup as the one described in Section 3.1. To estimate the

variance of µ̂greg, we computed several variance estimators in each sample: (i) V̂tay given by

(5); (ii) V̂g given by (7); (iii) V̂jack given by (10); (iv) The bias-adjusted variance estimators

V̂
(adj)
tay , V̂ (adj)

g and V̂ (adj)
jack , given respectively by (27)-(29). In addition, we computed the vari-

ance Vm := Vm(µ̂greg), which corresponds to the model variance µ̂greg. For each variance

estimator, we computed its Monte Carlo percent relative bias given by (20). The results

for Bernoulli sampling are shown in Table 1, whereas Table 2 shows the results for simple

random sampling without replacement.

From Table 1, we first note that observe that the target Vm exhibited a small bias for all

values of κ, which is consistent with Part i) of Result 4.1. The results pertaining to V̂tay, V̂g

and V̂jack are virtually identical to those presented in Section 3.1. The bias-adjusted versions
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Relative bias (in %)

p κ Vm V̂tay V̂g V̂jack V̂
(adj)
tay V̂

(adj)
g V̂

(adj)
jack

3 0.01 0.8 -1.7 -0.6 2.0 0.2 0.4 1.1
23 0.08 0.5 -14.1 -7.7 8.4 -0.1 0.1 0.9
43 0.14 0.7 -25.3 -14.2 16.5 0.0 0.2 1.2
63 0.21 0.2 -36.2 -21.3 25.2 -0.5 -0.3 1.0
83 0.28 0.3 -46.0 -28.0 36.5 -0.5 -0.2 1.3
103 0.34 0.3 -55.0 -34.7 50.1 -0.6 -0.3 1.5
123 0.41 0.6 -63.2 -41.2 67.7 -0.3 0.0 2.2
143 0.48 0.0 -70.9 -48.4 88.4 -1.0 -0.6 1.9
163 0.54 -0.7 -77.7 -55.5 115.2 -1.8 -1.6 1.4
183 0.61 -0.9 -83.5 -62.4 154.6 -2.2 -1.9 1.8
203 0.68 -1.5 -88.5 -69.4 212.6 -3.0 -2.7 1.9

Table 1: Monte Carlo percent relative bias of several variance estimators for Bernoulli sam-
pling: model-assisted estimation.

Relative bias (in %)

p κ Vm V̂tay V̂g V̂jack V̂
(adj)
tay V̂

(adj)
g V̂

(adj)
jack

3 0.01 1.2 -0.7 0.2 2.8 1.2 1.2 1.9
23 0.08 1.5 -12.7 -6.3 9.8 1.5 1.5 2.3
43 0.14 1.0 -24.6 -13.5 17.1 1.0 0.9 1.9
63 0.21 1.6 -35.0 -19.9 27.0 1.5 1.4 2.6
83 0.28 2.0 -44.7 -26.3 38.8 1.9 1.8 3.3
103 0.34 2.4 -53.8 -32.9 52.9 2.2 2.1 3.9
123 0.41 1.9 -62.4 -40.0 68.9 1.7 1.6 3.7
143 0.48 1.4 -70.1 -47.1 89.3 1.2 1.0 3.5
163 0.54 0.7 -77.0 -54.2 115.4 0.4 0.2 3.2
183 0.61 0.7 -82.9 -61.0 151.8 0.2 -0.1 3.4
203 0.68 -0.7 -88.1 -68.1 200.7 -1.2 -1.6 2.7

Table 2: Monte Carlo percent relative bias of several variance estimators for simple random
sampling without replacement: model-assisted estimation.

V̂
(adj)
tay , V̂ (adj)

g and V̂ (adj)
jack performed very well in terms of bias for all values of κ with an abso-

lute RB less than 3%. Similar results (see Table 2) were obtained for simple random sampling

without replacement, which can be explained by the fact that, in terms of variance, the strat-

egy consisting of Bernoulli sampling and the GREG estimator is asymptotically equivalent

to the strategy consisting of simple random sampling without replacement and the GREG

estimator.

25



6.2 Bias-adjusted variance estimators: Linear regression imputation

We used the same simulation setup as the one described in Section 3.2. To estimate the

variance of µ̂lr, we computed several variance estimators in each sample: (i) V̂I,tay given by

(5); (ii) V̂I,jack given by (10); (iii) V̂cor obtained from (30) with ψ(XR) = (1− ĥkk)
−1/2; (iv)

The bias-adjusted variance estimators V̂ (adj)
I,tay , V̂ (adj)

I,jack; (v) The variance estimators obtained

from (30) with ψ1(XR) and ψ2(XR) given by (35) and (36), respectively, and denoted by

V̂
(adj)
ψ1

and V̂
(adj)
ψ2

. In addition, we computed the (unfeasible) target given by (42). Finally,

we computed the (unfeasible) bias-adjusted variance estimators V̂ (adj)
I,tayT

and V̂
(adj)
I,jkT

that are

identical to V̂
(adj)
I,tay and V̂

(adj)
I,jack, respectively, except that they use the true value of Bk (see

Equation (31)) and the true value of σ2. For each variance estimator, we computed its Monte

Carlo percent relative bias given by (20). The results for Bernoulli sampling are shown in

Table 3, whereas Table 4 shows the results for simple random sampling without replacement.

From Table 3, we first note that the target Vtarget exhibited a small bias for all values of

κ, as expected. The results pertaining to V̂I,tay and V̂I,jack were virtually identical to those

presented in Section 3.2. The variance estimator V̂cor performed significantly better than

V̂I,tay and V̂I,jack, particularly for small to moderate values of κ, with an RB of -2% for

κ = 0.42, compared to -19.1% and 27.6% for V̂I,tay and V̂I,jack, respectively. However, the

performance of V̂cor slightly deteriorated for larger values of κ. For κ = 0.69, the value of

RB was approximately equal to 17%. Turning to the bias-adjusted variance estimators V̂ (adj)
I,tay

and V̂ (adj)
I,jack, they performed well for small to moderate values of κ. For instance, for κ = 0.42,

the variance estimators V̂ (adj)
I,tay and V̂ (adj)

I,jack exhibited a value of RB of about -7.6% and -0.9%,

respectively. However, for a large value of κ of 0.69, we note a deterioration for both V̂
(adj)
I,tay

and V̂
(adj)
I,jack with a value of RB of about -16.2% and 11%, respectively. This deterioration in
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terms of bias seems to correspond to the price to pay for estimating Bk in (31) in a high-

dimensional setting. Indeed, when comparing the relative bias of V̂ (adj)
I,tay and V̂ (adj)

I,jack with their

unfeasible counterparts V̂ (adj)
I,tayT

and V̂ (adj)
I,jkT

, we observe that the latter performed very well for

all values of κ with values of absolute RB remaining below 10% in all scenarios. Further

research is needed to develop estimators of Bk that are more robust to the dimensionality of

the vector x. Finally, the variance estimators V̂ (adj)
ψ1

and V̂ (adj)
ψ2

performed very well in terms

of bias for all values of κ. This is consistent with Result 5.2. Again, the results for simple

random sampling without replacement were similar to those obtained for Bernoulli sampling;

see Table 4.

Relative bias (in %)

κ Vtarget V̂I,tay V̂I,jack V̂cor V̂
(adj)
I,tay V̂

(adj)
I,jack V̂

(adj)
ψ1

V̂
(adj)
ψ2

V̂
(adj)
I,tayT

V̂
(adj)
I,jkT

0.02 -3.1 -5.7 -4.1 -4.9 -5.3 -4.8 -5.3 -5.3 -5.3 -4.8
0.15 -2.8 -9.6 1.5 -4.5 -5.4 -4.2 -5.5 -5.2 -5.2 -4.5
0.29 -3.0 -14.3 10.4 -4.0 -6.5 -3.5 -6.1 -5.8 -5.7 -4.5
0.42 -2.4 -19.1 27.6 -2.0 -7.6 -0.9 -6.2 -5.8 -5.7 -3.8
0.55 -4.3 -26.6 59.3 -1.2 -11.8 1.5 -8.7 -8.4 -8.2 -5.0
0.69 -4.6 -34.5 162.1 3.7 -16.2 11.0 -10.0 -10.0 -9.4 -2.8

Table 3: Monte Carlo percent relative bias of several variance estimators for Bernoulli sam-
pling: linear regression imputation.

Relative bias (in %)

κ Vtarget V̂I,tay V̂I,jack V̂cor V̂
(adj)
I,tay V̂

(adj)
I,jack V̂

(adj)
ψ1

V̂
(adj)
ψ2

V̂
(adj)
I,tayT

V̂
(adj)
I,jkT

0.02 -2.1 -4.6 -3.0 -3.8 -4.1 -3.7 -4.3 -4.1 -4.1 -3.7
0.15 -1.5 -8.2 3.0 -3.0 -4.0 -2.8 -4.3 -3.8 -3.8 -3.0
0.29 -1.5 -12.8 12.0 -2.4 -4.9 -1.9 -4.7 -4.2 -4.1 -3.0
0.42 -1.1 -17.7 29.0 -0.5 -6.0 0.6 -4.8 -4.3 -4.2 -2.3
0.55 -1.1 -23.6 62.6 2.4 -8.4 5.0 -5.3 -5.0 -4.7 -1.5
0.69 0.4 -30.0 151.8 9.2 -10.8 15.7 -4.6 -4.5 -3.9 2.1

Table 4: Monte Carlo percent relative bias of several variance estimators for simple random
sampling without replacement: linear regression imputation.
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7 Final remarks

In this article, we studied the behavior of linearization and jackknife variance estimators when

p/n is not negligible. For the GREG estimator, we showed that the customary linearization

variance estimator and its g-weighted version are biased negatively, whereas the jackknife is

biased positively. These biases did not vanish, even asymptotically, unless limv→∞ pv/nv = 0.

For model-assisted variance estimators, we obtained closed-form expressions for the bias of

both Taylor, g-weights, and the jackknife variance estimators. These expressions can be used

to define bias-adjusted variance estimators, which are unbiased regardless of the value of

p/n. Results from a simulation study support these findings. We have also examined the

behavior of imputed estimators under linear regression imputation. In this context, the bias

of linearization and jackknife variance estimators depends on unknown quantities. Developing

bias-adjusted variance estimators requires an intermediate estimation step. This is beyond

the scope of this article, and is a topic currently under investigation.

Our theoretical investigations were limited to simple random sampling without replacement

and Bernoulli sampling. While we empirically evaluated the performance of several vari-

ance estimators for Poisson sampling with unequal probabilities, a theoretical analysis of the

properties of linearization and jackknife variance estimators for unequal probability sampling

designs remains to be explored.

In this paper, we did not examine bootstrap variance estimators in high-dimensional settings.

Unreported results suggest that customary finite population bootstrap procedures may ex-

hibit substantial positive bias in high dimensions, consistent with recent findings by El Karoui

and Purdom (2018); Zhao and Candes (2022) in an i.i.d. setup. This is a topic of future

research.

Recently, Stefan and Hidiroglou (2024) proposed a jackknife version of the GREG estimator

along with a jackknife variance estimator for its mean squared error in a low-dimensional

setting. The extension of these methods to the high-dimensional setting will be addressed

elsewhere.

28



References

Berger, Y. G. and Rao, J. (2006). Adjusted jackknife for imputation under unequal probability

sampling without replacement. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 68(3):531–547.

Berger, Y. G. and Skinner, C. J. (2005). A jackknife variance estimator for unequal probability

sampling. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

67(1):79–89.

Breidt, F. J. and Opsomer, J. D. (2017). Model-assisted survey estimation with modern

prediction techniques. Statistical Science, 32(2):190–205.

Campbell, C. (1980). A different view of finite population estimation. In Washington, D.,

editor, Proc. Survey Res. Meth. Sect. Am. Statist. Assoc., pages 319–324.

Cardot, H., Goga, C., and Shehzad, M.-A. (2017). Calibration and partial calibration on

principal components when the number of auxiliary variables is large. Statistica Sinica,

27(243-260).

Chauvet, G. and Goga, C. (2022). Asymptotic efficiency of the calibration estimator in a

high-dimensional data setting. Journal of Statistical Planning and Inference, 217:177–187.

Chen, S. and Haziza, D. (2019). Recent developments in dealing with item non-response in

surveys: a critical review. International Statistical Review, 87:S192–S218.

Dagdoug, M., Goga, C., and Haziza, D. (2022). Model-assisted estimation in high-dimensional

settings for survey data. Journal of Applied Statistics. https://doi.org/10.1080/

02664763.2022.2047905.

Duchesne, P. (2000). A note on jackknife variance estimation for the general regression

estimator. Journal of Official Statistics, 16(2):133.

El Karoui, N. and Purdom, E. (2018). Can we trust the bootstrap in high-dimensions? the

case of linear models. The Journal of Machine Learning Research, 19(1):170–235.

29

https://doi.org/10.1080/02664763.2022.2047905
https://doi.org/10.1080/02664763.2022.2047905


Fay, R. (1991). A design-based perspective on missing data variance. US Census Bureau.

Fuller, W. A. (2009). Sampling statistics. John Wiley & Sons.

Haziza, D. (2009). Imputation and inference in the presence of missing data. In Pfeffermann,

D. and Rao, C., editors, Handbook of statistics, volume 29A, pages 215–246. Elsevier.

Haziza, D. and Vallée, A.-A. (2020). Variance estimation procedures in the presence of singly

imputed survey data: a critical review. Japanese Journal of Statistics and Data Science,

3(2):583–623.

Isaki, C.-T. and Fuller, W.-A. (1982). Survey design under the regression superpopulation

model. J. Amer. Statist. Assoc., 77:49–61.

Karoui, N. E. and Koesters, H. (2011). Geometric sensitivity of random matrix results:

consequences for shrinkage estimators of covariance and related statistical methods. arXiv:

Statistics Theory.

Kim, J. K. and Rao, J. (2009). A unified approach to linearization variance estimation from

survey data after imputation for item nonresponse. Biometrika, 96(4):917–932.

Mashreghi, Z., Haziza, D., and Léger, C. (2016). A survey of bootstrap methods in finite

population sampling. Statistics Surveys, 10(none).

Pajor, A. and Pastur, L. (2009). On the limiting empirical measure of eigenvalues of the sum

of rank one matrices with log-concave distribution. Studia Mathematica, 1(195):11–29.

Pfeffermann, D. and Sverchkov, M. (2009). Inference under informative sampling. In Hand-

book of statistics, volume 29, pages 455–487. Elsevier.

Portnoy, S. (1987). A central limit theorem applicable to robust regression estimators. Journal

of multivariate analysis, 22(1):24–50.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3):581–592.

30



Särndal, C. E. (1980). On pi-inverse weighting versus best linear unbiased weighting in

probability sampling. Biometrika, 67(3):639–650.

Särndal, C.-E. (1992). Methods for estimating the precision of survey estimates when impu-

tation has been used. Survey Methodology, 18:241–252.

Särndal, C.-E. (2007). The calibration approach in survey theory and practice. Survey

Methodology, 33:99–119.

Särndal, C.-E., Swensson, B., and Wretman, J. (1992). Model assisted survey sampling.

Springer Series in Statistics. Springer-Verlag, New York.

Särndal, C.-E., Swensson, B., and Wretman, J. H. (1989). The weighted residual technique

for estimating the variance of the general regression estimator of the finite population total.

Biometrika, 76(3):527–537.

Shao, J. and Steel, P. (1999). Variance estimation for survey data with composite imputation

and nonnegligible sampling fractions. Journal of the American Statistical Association,

94(445):254–265.

Stefan, M. and Hidiroglou, M. A. (2024). Jackknife bias-corrected generalized regression

estimator in survey sampling. Journal of Survey Statistics and Methodology, 12(1):211–231.

Ta, T., Shao, J., Li, Q., and Wang, L. (2020). Generalized regression estimators with high-

dimensional covariates. Statistica Sinica.

Valliant, R. (2002). Variance estimation for the general regression estimator. Survey method-

ology, 28(1):103–108.

Wang, Z., Peng, L., and Kim, J. K. (2022). Bootstrap inference for the finite population

mean under complex sampling designs. Journal of the Royal Statistical Society Series B:

Statistical Methodology, 84(4):1150–1174.

Wolter, K. (2007). Introduction to Variance Estimation. New York: Springer.

31



Yung, W. and Rao, J. (1996). Jackknife linearization variance estimators under stratified

multi-stage sampling. Survey Methodology, 22:23–32.

Zhao, Q. and Candes, E. J. (2022). An adaptively resized parametric bootstrap for inference

in high-dimensional generalized linear models. arXiv preprint arXiv:2208.08944.

32



Appendices

A Additional simulation studies

A.1 Proportional-to-size Poisson sampling

To evaluate the performance of linearization and jackknife variance estimators, along with

their bias-adjusted versions, under unequal probability sampling designs, we conducted an

additional simulation study using Poisson sampling with first-order inclusion probabilities

proportional to size. The data-generating processes used in Section 3 remain unchanged.

More specifically, the first-order inclusion probability for unit k was defined as

πk := ñ
x2k2∑
ℓ∈U x

2
ℓ2

, k ∈ U,

where ñ denote the expected sample size. The correlation between the inclusion probabilities

and the survey variable was about 0.4. The results for model-assisted estimation and linear

regression imputation are presented in Tables 5 and 6, respectively.

Relative bias (in %)

p κ Vm V̂tay V̂g V̂jack V̂
(adj)
tay V̂

(adj)
g V̂

(adj)
jack

3 0.01 1.7 -0.8 -0.2 6.2 1.3 0.9 5.3
23 0.08 2.4 -12.7 -6.4 22.2 3.2 1.6 13.8
43 0.14 3.1 -23.9 -12.6 41.0 5.1 2.3 22.8
63 0.21 3.0 -35.0 -19.7 61.9 6.4 2.0 30.7
83 0.28 2.4 -45.5 -27.0 85.7 7.2 1.5 38.1
103 0.34 2.2 -54.8 -34.1 114.5 8.7 1.2 45.3
123 0.41 3.3 -62.8 -40.3 152.4 11.6 2.2 54.1
143 0.48 2.2 -70.7 -47.9 193.6 12.4 1.0 59.0
163 0.54 2.5 -77.4 -54.7 251.4 14.8 1.1 65.8
183 0.61 2.2 -83.3 -61.8 325.8 16.5 0.6 70.4
203 0.68 0.9 -88.5 -69.0 432.8 17.1 -0.8 73.9

Table 5: Monte Carlo percent relative bias of several variance estimators for Poisson sampling:
model-assisted estimation.

In the model-assisted estimation setting, the behavior of V̂tay, V̂g and V̂jack remained similar

to that observed in simple random sampling without replacement and Bernoulli sampling.

Although the adjusted jackknife variance estimator showed substantially lower RB than its
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Relative bias (in %)

κ Vtarget V̂I,tay V̂I,jack V̂cor V̂
(adj)
I,tay V̂

(adj)
I,jack V̂

(adj)
ψ1

V̂
(adj)
ψ2

V̂
(adj)
I,tayT

V̂
(adj)
I,jkT

0.02 -0.3 -2.3 0.1 -1.1 -1.6 -0.6 -11.8 -1.8 -1.6 -0.6
0.15 -0.3 -6.0 9.7 0.7 -1.0 2.9 -7.8 -1.7 -0.8 2.6
0.29 0.6 -10.1 27.3 3.6 -0.5 9.3 -6.6 -1.4 0.4 8.0
0.42 2.0 -15.6 58.4 6.8 -1.1 17.7 -7.0 -1.9 1.4 13.8
0.55 5.7 -21.6 129.9 12.7 -1.1 32.7 -6.2 -1.7 4.0 23.4
0.69 12.1 -30.4 4331.7 21.7 -2.5 257.3 -4.8 -1.8 10.0 114.2

Table 6: Monte Carlo percent relative bias of several variance estimators for Poisson sampling:
linear regression imputation.

unadjusted counterpart, V̂jack, it still exhibited significant RB for moderate to large values

of κ. The adjusted estimator V̂ (adj)
tay performed well for small to moderate values of κ but

the bias slightly deteriorated as κ increased. For instance, for κ = 0.68, its RB was equal to

17.1%. Finally, the adjusted estimator V̂ (adj)
g performed very well for all values κ with an

absolute value of RB less than 2.5% in all the scenarios.

In the linear regression imputation setting, the behaviour of V̂I,tay and V̂I,jack was similar to

that observed under simple random sampling without replacement and Bernoulli sampling.

Again, the adjusted jackknife variance estimator V̂ (adj)
I,jack outperformed its unadjusted counter-

part V̂I,jack but but still exhibited significant positive bias for large values of κ. The estimator

V̂cor performed well for small to moderate values of κ, whereas it exhibited a moderate posi-

tive RB for κ = 0.55 and κ = 0.69. Turning to V̂ (adj)
ψ1

and V̂ (adj)
ψ2

, they performed surprisingly

very well despite being developed under Bernoulli sampling.

A.2 Non Gaussian distributions

We conducted a simulation study assessing the performance of the variance estimators when

both the explanatory variables and the model errors were generated using non Gaussian

distributions. We present the results for simple random sampling without replacement, as

the findings for Bernoulli sampling were similar and are therefore omitted. We replicated the

simulation processes described in Sections 6.1 and 6.2, with the following modifications: i)The
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explanatory variables were independently generated from a gamma distribution with shape

parameter equal to 8 and rate parameter equal to 1; ii) The errors in (19), were generated

from a uniform distribution U [−15; 15]. The results for model-assisted estimation and linear

regression imputation are presented in Tables 7 and 8, respectively.

The results in Table 7 suggest that the behavior of all variance estimators was similar to

that observed Section 6.1 for simple random sampling without replacement. Indeed, the

magnitude of the RB associated to V̂tay, V̂g and V̂jack got worse as κ increased. The bias-

adjusted versions V̂ (adj)
tay , V̂ (adj)

g and V̂ (adj)
jack still performed very well with an absolute RB less

than 4% for all values of κ.

From Table 8, the estimators V̂I,tay and V̂I,jack exhibited the same behavior as observed in

Section 6.2 with their RB increasing significantly in magnitude as κ increased. In contrast,

V̂I,cor performed very well, with an absolute RB less than 3% for all values of κ. Turning to

the bias-adjusted estimators V̂ (adj)
I,tay and V̂ (adj)

I,jack, both performed well, with values of absolute

RB below 6% in all scenarios. Finally, the variance estimators V̂ (adj)
ψ1

, V̂ (adj)
ψ2

continued to

perform well in terms of RB across all values of κ.

Relative bias (in %)

p κ Vm V̂tay V̂g V̂jack V̂
(adj)
tay V̂

(adj)
g V̂

(adj)
jack

3 0.01 0.5 -1.4 -0.5 2.1 0.5 0.5 1.2
23 0.08 0.5 -13.6 -7.2 8.8 0.5 0.4 1.4
43 0.14 1.0 -24.6 -13.5 17.3 1.0 0.9 2.1
63 0.21 0.5 -35.6 -20.7 25.9 0.5 0.3 1.7
83 0.28 0.2 -45.6 -27.6 36.6 0.2 0.0 1.7
103 0.34 0.1 -54.7 -34.4 49.8 0.1 -0.2 1.8
123 0.41 0.6 -62.8 -40.8 67.0 0.5 0.2 2.5
143 0.48 -0.2 -70.6 -47.9 86.5 -0.3 -0.6 2.0
163 0.54 0.6 -77.1 -54.3 115.1 0.3 0.0 3.1
183 0.61 0.3 -83.0 -61.1 151.1 -0.1 -0.5 3.2
203 0.68 0.3 -88.0 -67.8 204.1 -0.1 -0.6 3.9

Table 7: Monte Carlo percent relative bias of several variance estimators for simple random
sampling without replacement: model-assisted estimation.
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Relative bias (in %)

κ Vtarget V̂I,tay V̂I,jack V̂cor V̂
(adj)
I,tay V̂

(adj)
I,jack V̂

(adj)
ψ1

V̂
(adj)
ψ2

V̂
(adj)
I,tayT

V̂
(adj)
I,jkT

0.02 -1.8 -3.6 -2.2 -2.9 -3.3 -2.7 -3.8 -3.3 -3.3 -2.7
0.15 -1.9 -9.8 6.8 -2.8 -4.1 -2.4 -4.2 -3.9 -3.9 -2.8
0.29 -1.3 -18.2 38.6 -0.4 -5.6 1.2 -4.4 -4.3 -4.1 -1.5
0.42 -1.8 -3.6 -2.2 -2.9 -3.3 -2.7 -3.8 -3.3 -3.3 -2.7
0.55 -1.9 -9.8 6.8 -2.8 -4.1 -2.4 -4.2 -3.9 -3.9 -2.8
0.69 -1.3 -18.2 38.6 -0.4 -5.6 1.2 -4.4 -4.3 -4.1 -1.5

Table 8: Monte Carlo percent relative bias of several variance estimators for simple random
sampling without replacement: linear regression imputation.

A.3 Asymptotic experiments with p/n fixed

In this simulation, we assess the relative biases of the variance estimators discussed in the

article, keeping κ fixed while allowing nv and Nv to increase. We considered two asymptotic

regimes: κ∗ = 0.1 and κ∗ = 0.5. We considered three population sizes {Nv} given by

N1 = 1000, N2 = 5000, N3 = 1000. The sample sizes {nv} were given by nv = ⌊N58/100
v ⌋. This

corresponds to a scenario where π∗ = 0. The samples was selected according to simple random

sampling without replacement. The results for model-assisted estimation are presented in

Table 9 and Table 10, respectively.

p n Vm V̂tay V̂g V̂jack V̂
(adj)
tay V̂

(adj)
g V̂

(adj)
jack

κ = 0.1
6 54 -0.63 -20.94 -12.12 15.91 -1.98 -2.30 5.45

14 139 -2.06 -20.59 -12.17 10.23 -2.33 -2.41 -0.27
21 208 1.37 -17.82 -8.93 13.76 1.24 1.19 2.79
κ = 0.5
28 54 0.08 -76.19 -53.70 125.00 -4.88 -7.15 17.33
70 139 0.97 -74.62 -50.70 107.72 -0.52 -1.39 6.08

105 208 0.21 -75.04 -51.00 104.64 -1.23 -1.97 3.95

Table 9: Evolution of the Monte Carlo percent relative bias of several variance estimators for
simple random sampling: model-assisted estimation.

We observe from Table 9 that the RB of V̂tay, V̂g converged to strictly negative quantities.

Similarly, the RB of V̂jack converged to strictly positive quantities. These results support our

theoretical results, confirming that V̂tay, V̂g, and V̂jack remain asymptotically biased whenever
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κ > 0. On the other hand, the bias-adjusted variance estimators exhibited only negligible

bias asymptotically. We obtained similar results in the linear regression imputation setting;

see Table 10.

p E [nr] Vtarget V̂I,tay V̂I,jack V̂cor V̂
(adj)
I,tay V̂

(adj)
I,jack V̂

(adj)
ψ1

V̂
(adj)
ψ2

V̂
(adj)
I,tayT

V̂
(adj)
I,jkT

κ = 0.1
3 28 -0.39 -7.20 5.14 -1.78 -4.54 0.01 -5.78 -4.50 -4.44 -0.17
7 70 -0.54 -5.08 2.92 -1.35 -2.43 -0.85 -3.00 -2.37 -2.34 -0.97

11 104 -0.88 -5.11 2.73 -1.43 -2.24 -1.12 -2.57 -2.16 -2.14 -1.23
κ = 0.5
14 28 -0.09 -26.90 666.28 4.97 -13.11 105.32 -11.89 -10.73 -9.06 88.48
35 70 0.38 -19.44 58.88 4.55 -5.50 9.31 -3.63 -2.97 -2.50 3.94
53 104 -0.02 -19.44 55.25 4.26 -5.10 7.27 -2.77 -2.38 -2.05 2.00

Table 10: Evolution of the Monte Carlo percent relative bias of several variance estimators
for simple random sampling: linear regression imputation.

A.4 Empirical validity of (H1W) and (H1S)

In this section, we present the results from a simulation study, assessing the validity of

Assumption (H1W) and (H1S) for some common continuous distributions of the covariates

Px: the normal distribution, the uniform distribution, and the exponential distribution.

Under Bernoulli sampling, if {xk}k∈U are i.i.d. Px, then, given S, {xk}k∈S are also i.i.d.

Px; see Theorem 1.3.1. in Fuller (2009). Therefore, we performed a Monte-Carlo simulation

so that, at each of the R = 200 iterations, we selected a sample of size nv of pv covariates

according to Bernoulli sampling, and computed maxk∈[nv ]|hkk,v − pv/nv| and mink∈[nv ] hkk,v.

Here, [n] := {1, 2, . . . , n}. In Figure 5, we plotted the Monte-Carlo distribution of these

statistics for different values of v, ranging from v = 1 to v = 10. The sample sizes {nv} were

set to nv := v× 1000 and {pv} was set such that pv = ⌊κnv⌋, with κ := 0.05. Here, the value

of κ is small but not negligible, chosen specifically to reduce the computational complexity

of the simulations. We also conducted simulations for larger values of κ. The results are very

similar to those presented in Figure 5.

For each covariate distribution, both (H1S) and (H1W) appear to hold. The plots on the left

suggest that the mean of the distributions of the maximum discrepancy converges to zero,
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with its variance also decreasing to zero. From the plots on the right, we observe that the

minimum leverage remains bounded away from zero, as expected. A theoretical investigation

establishing the validity of both (H1S) and (H1W) is beyond the scope of this article but is

currently being pursued.

B Proofs

As mentioned in the main article, we assume below, without loss of generality, that σ2 is

known.

B.1 Proof of Proposition 2.1.

The generalized jackknife variance estimator of µ̂greg is defined in Berger and Skinner (2005)

as

V̂jack (µ̂greg) :=
∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ
zkzℓ, (37)

where

zk := (1− wk)
(
µ̂greg − µ̂(k)greg

)
. (38)

In (38), µ̂(k)greg denotes the GREG estimator as defined in (2), computed by deleting the ele-

ment k of the sample (but not of the population). More generally, in what follows, we use

the subscript (k) to denote any statistic (or, set) computed after deleting element k.

To derive a closed-form formula for (37), it suffices to find a closed-form formula for µ̂(k)greg. In

Duchesne (2000), a formula is given when the inclusion probabilities are reweighted after the

deletion of an element, a practice that we do not do with the generalized jackknife variance

estimator. Below, we give a simple proof relying on Lemma 1. We let t̂greg := Nµ̂greg be the

usual total GREG estimator. We begin by noting that if the full-sample GREG estimator

can be written in projection form, then the leave-one-out version of the estimator can, too.

It follows that

t̂ (k)
greg = t⊤x β̂

(k)
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Figure 5: Asymptotic evolution of the distributions of statistics involved in (H1S) and (H1W).
Colors represent the value of the mean of the distribution: warmer colors indicate higher
values.
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= t⊤x

(
β̂ −

A−1
ΠSdkxk ϵ̂kS

1− h̃πkk

)

= t̂greg −
dkgk ϵ̂ks

1− h̃πkk
.

Now,

µ̂(k)greg :=
t̂
(k)
greg

N
= µ̂greg −

dkgk ϵ̂ks

N
(
1− h̃πkk

) ,
from which it follows that

µ̂(k)greg − µ̂greg = − 1

N

dkgk ϵ̂ks

1− h̃πkk
.

Finally,

zk =
1

N

(1− wk) gk ϵ̂ks

πk

(
1− h̃πkk

) ,
which concludes the proof.

B.2 Proof of Result 2.1.

The Generalized Jackknife variance estimator proposed in Berger and Rao (2006) is

V̂I,jack (µ̂lr) :=
∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ
ekeℓ, (39)

where

ek := (1− wk)
(
µ̂lr − µ̂

(k)
lr

)
, and wk :=

dk

N̂
.

The effect of deleting a respondent or nonrespondent is different; we treat these cases sepa-

rately. For k ∈ Sm, write

µ̂
(k)
lr :=

1

N̂ − dk

∑
ℓ∈Sr

yℓ
πℓ

+
∑
j∈S(k)

m

x⊤
ℓ β̂R
πℓ



=
1

N̂ − dk

∑
ℓ∈Sr

yℓ
πℓ

+
∑
ℓ∈Sm

x⊤
ℓ β̂R
πℓ

−
x⊤
k β̂R
πk


40



=
N̂

N̂ − dk

(
µ̂lr −

x⊤
k β̂R

N̂πk

)
.

Similarly, using Lemma 1, for k ∈ Sr, we have

µ̂
(k)
lr :=

1

N̂ − dk

 ∑
ℓ∈S(k)

r

yℓ
πℓ

+
∑
ℓ∈Sm

x⊤
ℓ β̂

(k)

R

πℓ



=
1

N̂ − dk

∑
ℓ∈Sr

yℓ
πℓ

− yk
πk

+
∑
ℓ∈Sm

x⊤
ℓ

πℓ

(
β̂r −

A−1
ΠRxk ϵ̂Rk

πk(1− ĥπkk)

)
=

N̂

N̂ − dk

µ̂lr − 1

N̂πk

yk + ∑
ℓ∈Sm

x⊤
ℓ

πℓ

A−1
ΠRxk ϵ̂Rk

1− ĥπkk


 .

Thus, introducing response indicators, we obtain for an arbitrary element k ∈ S,

µ̂
(k)
lr =

N̂

N̂ − dk

(
µ̂lr −

1

N̂πk
ξ̂

(jk)
k

)
,

from which it follows that

µ̂
(k)
lr − µ̂lr =

dk

N̂ − dk

(
µ̂lr − ξ̂

(jk)
k

)
.

Therefore, a closed-form formula of ek is given by

ek =
dk

N̂

(
µ̂lr − ξ̂

(jk)
k

)
.

Replacing ek by its closed formula in (39) leads to the result.

B.3 Proof of Result 4.1.

Statement i).

Consider the following variance decomposition:

V (µ̂greg) = Ep [Vm (µ̂greg)] +Vp (Em [µ̂greg]) .

Note that,

Em [µ̂greg] = Em

[
1

N

∑
k∈U

x⊤
k β̂S

]
=

1

N

∑
k∈U

x⊤
k β.
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In particular, observe that this quantity is independent of S, so that

V (µ̂greg) = Ep [Vm (µ̂greg)] ,

when the model is correctly specified. This establishes unbiasedness. For the asymptotic

equivalence, we show that

lim
v→∞

n2v × E
[
{V (µ̂greg)−Vm (µ̂greg)}2

]
= 0.

Write µ̂greg as µ̂greg = µ⊤
x β̂S with µx := tx/N . It follows that

Vm (µ̂greg) = µ⊤
xVm

(
β̂S

)
µx =

σ2

π
µ⊤
xA

−1
ΠSµx =

σ2

πN2

∑
k∈U

gk =
σ2

πN
En,U [g] . (40)

We begin with the following decomposition:

V (µ̂greg)−Vm (µ̂greg) =
σ2

πN2
v

∑
k∈Uv

(gk,v − Ep [gk,v]) .

It thus follows that

n2v × Ep
[
{V (µ̂greg)−Vm (µ̂greg)}2

]
=

n2vσ
4

π2N4
v

Ep

∑
k∈Uv

(gk,v − Ep [gk,v])


2

⩽
n2vσ

4

π2N3
v

∑
k∈Uv

Ep

[
{(gk,v − Ep [gk,v])}2

]
.

By symmetry, we obtain

n2v × Ep
[
{V (µ̂greg)−Vm (µ̂greg)}2

]
⩽

n2vσ
4

π2N2
v

Vp (g1,v) = o(1),

by assumption.

Statement ii).

Taylor: Under a Bernoulli sampling design, the Taylor variance estimator reduces to

V̂tay =
1

N2

1− π

π2

∑
k∈S

ϵ̂2kS +
σ2

N
.
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Thus,

Em

[
V̂tay

]
=

1

N2

1− π

π2

∑
k∈S

σ2
(
1− h̃kk

)
+
σ2

N

=
σ2

N2

1− π

π2
(ns − p) +

σ2

N

=
σ2ns
N2

1− π

π2
(1− κ) +

σ2

N

≃ σ2

N

1− π

π
(1− κ) +

σ2

N
.

Recalling (40), it follows that

Em

[
V̂tay

]
Vm (µ̂greg)

=

σ2

N

1− π

π
(1− κ)

σ2

πN
En,U [g]

+

σ2

N
σ2

πN
En,U [g]

≃ (1− π∗) (1− κ∗)

En,U [g]
+

π∗
En,U [g]

.

G-weighted: Using Lemma 2, we may write

Em

[
V̂g

]
=

1

N2

1− π

π2

∑
k∈S

σ2
(
1− h̃kk

)
g2k +

σ2

N

=
σ2

N2

1− π

π2

(∑
k∈S

g2k −
∑
k∈S

h̃kkg
2
k

)
+
σ2

N

=
σ2

N2

1− π

π2

(
N2π2

σ2
Vm (µ̂greg)−

∑
k∈S

h̃kkg
2
k

)
+
σ2

N

= (1− π)Vm (µ̂greg)−
σ2

N

1− π

π
En,S

[
g2h
]
+
σ2

N
.

Therefore,

Em

[
V̂g

]
Vm (µ̂greg)

=
(1− π)Vm (µ̂greg)−

σ2

N

1− π

π
En,S

[
g2h
]
+
σ2

N
Vm (µ̂greg)

= (1− π)−
(1− π)En,S

[
g2h
]

En,U [g]
+

π

En,U [g]

≃ (1− π∗)

{
1−

En,S
[
g2h
]

En,U [g]

}
+

π∗
En,U [g]

.
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Jackknife: In Bernoulli sampling, the Jackknife variance estimator reduces to

V̂jack =
(n− 1)2

n2N2

1− π

π2

∑
k∈S

g2k ϵ̂
2
ks(

1− h̃kk

)2 +
σ2

N
≃ 1

N2

1− π

π2

∑
k∈S

g2k ϵ̂
2
ks(

1− h̃kk

)2 +
σ2

N
,

so that

Em

[
V̂jack

]
≃ σ2

N2

1− π

π2

∑
k∈S

g2k

(
1− h̃kk

)
(
1− h̃kk

)2 +
σ2

N
=

σ2

N2

1− π

π2

∑
k∈S

g2k(
1− h̃kk

) +
σ2

N
.

It follows that

Em

[
V̂jack

]
Vm (µ̂greg)

≃

σ2

N

1− π

π
En,S

[
g2/ (1− h)

]
σ2

πN
En,U [g]

+
π

En,U [g]
≃ (1− π∗)

En,S
[
g2/ (1− h)

]
En,U [g]

+
π∗

En,U [g]
.

B.4 Proof of Corollary 4.1.

Under Bernoulli sampling with π∗ = 0, the bias ratios of V̂tay, V̂g and V̂jack are given by

Em

[
V̂tay,v

]
Vm (µ̂greg,v)

≃ (1− κ∗)

En,U [g]
,

Em

[
V̂g,v

]
Vm (µ̂greg,v)

≃

1−
En,S

[
g2h̃
]

En,U [g]

 ,

Em

[
V̂jack,v

]
Vm (µ̂greg,v)

≃
En,S

[
g2/

(
1− h̃

)]
En,U [g]

.

Statement i).

Taylor: The statement of the bias ratio of V̂tay has been shown above.

G-weighted: It remains to show the inequality. Under (H1W), we may write

En,S
[
g2h̃
]
=

1

nS

∑
k∈S

g2kh̃kk ⩾ f1

(
pv
nv

)
1

nS

∑
k∈S

g2k = f1

(
pv
nv

)
En,S

[
g2
]
≃ f1

(
pv
nv

)
En,U [g] ,

where the last equality follows from the fact, easily shown from Lemma 2, that

En,S
[
g2
]
=

n

nS
En,U [g] .
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Hence, using the positivity of En,U [g], we obtain

Em

[
V̂g,v

]
Vm (µ̂greg,v)

≃

1−
En,S

[
g2h̃
]

En,U [g]

 ≲ 1− f1

(
pv
nv

)
.

Jackknife: By assumption, uniformly in k, we have

f1

(
pv
nv

)
⩽ h̃kk ⇔ 1− f1

(
pv
nv

)
⩾ 1− h̃kk ⇔

g2k

1− f1

(
pv
nv

) ⩽
g2k

1− h̃kk
.

It follows from the above that

1

1− f1

(
pv
nv

)En,S
[
g2
]
⩽ En,S

[
g2

1− h

]
⇔

Em

[
V̂jack,v

]
Vm (µ̂greg,v)

⩾
1

1− f1

(
pv
nv

) En,S
[
g2
]

En,U [g]
≃ 1

1− f1

(
pv
nv

) .

B.5 Proof of Result 5.1.

Step 1: Derivation of a target.

We first obtain an expression of the target variance of µ̂lr using the method of Särndal (1992).

This estimator, denoted Vtarget(µ̂lr), will remain unbiased even in cases where pv/nv → κ∗ >

0. Using the law of total variance on µ̂lr, we get the following decomposition:

V(µ̂lr) = Vsam(µ̂lr) +Vnr(µ̂lr) +Vmix(µ̂lr),

where

Vsam(µ̂lr) := EmVp(µ̂H),

Vnr(µ̂lr) = EqEpVm(µ̂lr − µ̂H),

and

Vmix(µ̂lr) := 2EpEqCovm {µ̂H − µy, µ̂lr − µ̂H} ,

and µ̂H := N̂−1
∑

k∈S π
−1
k yk. In the case of linear regression imputation and Bernoulli sam-

pling, it can be shown that Vmix(µ̂lr) = 0. Now, using a first-order Taylor expansion, a full

sample estimator of Vsam(µ̂lr) is given by

V̂sam(µ̂lr) =
1− π

n2s

∑
k∈S

(yk − µ̂H)
2 .
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We now turn to the nonresponse component. It can be shown that

Vnr = EqEp

[
σ2

(N̂π)2

∑
k∈S

{
Rk(1 + Γ̂k)− 1

}2
]
. (41)

Assuming σ2 is known, the above quantity can be estimated by

V̂nr =
σ2

n2s
Ân,

where

Ân =
∑
k∈Sr

(1 + Γ̂k)
2 − ns = nm +

∑
k∈Sr

Γ̂2
k.

The target variance estimator is therefore given by

V̂target := V̂sam + V̂nr =
1− π

n2s

∑
k∈S

(yk − µ̂H)
2 +

σ2

n2s
Ân, (42)

Expanding the square and taking model expectations give

Em

[
V̂sam(µ̂lr)

]
=

1− π

n2s

∑
k∈S

Em

[
(yk − µ̂H)

2
]

=
1− π

n2s

{∑
k∈S

(x⊤
k β)

2 + nsσ
2 − 2

ns

∑
k∈S

∑
ℓ∈S

x⊤
k βx

⊤
ℓ β − 2σ2 +

1

n

∑
k∈S

∑
ℓ∈S

x⊤
k βx

⊤
ℓ β + σ2

}

=
1− π

n2s

{∑
k∈S

Bk + σ2 (ns − 1)

}
, (43)

where

Bk =
1

ns

∑
ℓ∈S

{
(x⊤
ℓ β)

2 − x⊤
k βx

⊤
ℓ β
}
.

Adding (43) and (41) and ignoring the negligible terms, we obtain an unbiased target variance

estimator of Em[Vtarget(µ̂lr)]

Em [Vtarget(µ̂lr)] = Em

(
V̂sam + V̂nr

)
=

1

n2s

(1− π)
∑
k∈S

Bk + σ2

(1− π)ns + nm +
∑
k∈Sr

Γ̂2
k

 .
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Step 2: Computing the model expectation of an arbitrary estimator in V.

Let V̂ (ψ) be an arbitrary estimator in V. Since V̂ (ψ) ∈ V, there exists some {ψv}v∈N satisfying

V̂ (ψ) =
1

N̂2

∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

µ̂lr − ξ̂
(ψv)
k

πk

µ̂lr − ξ̂
(ψv)
ℓ

πℓ
+
σ2

N̂2

∑
k∈Sr

1

πk

{
1−Rk(1 + Γ̂k)

}2
, (44)

with

ξ̂
(ψv)
k := ỹk + rkψv(XR)Γ̂k ϵ̂kR, k ∈ S.

In case of Bernoulli sampling, V̂ (ψ) in (44) reduces to

V̂ (ψ) =
1− π

n2s

∑
k∈S

(
µ̂lr − ξ̂

(ψv)
k

)2
+
πσ2

n2s

nm +
∑
k∈Sr

Γ̂2
k

 .

We start by expanding the square as follows:

Em

[(
µ̂lr − ξ̂

(ψv)
k

)2]
= Em

[(
ξ̂

(ψv)
k

)2]
−2Em

[
µ̂lr ξ̂

(ψv)
k

]
+Em

[
µ̂2lr
]
:= A1(k)−2A2(k)+A3.

After some tedious though relatively straightforward algebra, it can be shown that

A1(k) =
(
x⊤
k β
)2

+ σ2
(
Rk + [1−Rk] ĥkk + 2RkΓ̂kψv(XR)

[
1− ĥkk

]
+RkΓ̂

2
kψv(XR)

2
[
1− ĥkk

])

A2(k) =
1

ns

(
x⊤
k β
∑
ℓ∈S

x⊤
l β + σ2

(
1 + Γ̂k

))

A3 =
1

n2s

[∑
k∈S

x⊤
k β

]2
+ σ2

nr + 2nm +
∑
k∈Sm

Γ̂k

 .

Summing over k and ignoring the negligible terms, we obtain the following asymptotic equiv-

alence

Em

[∑
k∈S

(
µ̂lr − ξ̂

(ψv)
k

)2]
≃
∑
k∈S

Bk

+ σ2
{nr + ∑

k∈Sm

ĥkk +

∑
k∈Sr

(
1− ĥkk

)
ψ(XR)Γk {2 + ψ(XR)Γk}

 .
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It follows that

Em

[
V̂ (ψ)

]
=

1− π

n2s

∑
k∈S

Bk

+ σ2

1− π

n2s

nr + ∑
k∈Sm

ĥkk +
∑
k∈Sr

(
1− ĥkk

)
ψ(XR)Γk {2 + ψ(XR)Γk}

+
π

n2s

nm +
∑
k∈Sr

Γ̂2
k

 .

Taking the ratios of Em
[
V̂ (ψ)

]
and Em [Vtarget(µ̂lr)] yields the result.

B.6 Proof of Result 5.2.

We let V̂ (ψ) be an arbitrary element of Ṽ with constant ψ ∈ R. Next, using Result 5.1 and

Corollary 5.1, we write the absolute asymptotic relative bias of V̂ to get

ARB
(
V̂ (ψ)

)
:=

∣∣∣∣Em [V̂ (ψ)
]
− Em

[
V̂target

] ∣∣∣∣
Em

[
V̂target

] =

σ2 (1− π)

∣∣∣∣Aψ −Atheo

∣∣∣∣
Em

[
V̂target

] , (45)

where it can be shown that, in our setting,

Aψ := nr +
∑
k∈Sm

ĥkk + 2ψ
∑
k∈Sr

(
1− ĥkk

)
Γ̂k + ψ2

∑
k∈Sr

(
1− ĥkk

)
Γ̂2
k,

Atheo := nr + 2nm +
∑
k∈Sr

Γ2
k.

The absolute asymptotic relative bias takes only positive values; we view this quantity as a

function of ψ over the real line. Hence,

min
ψ∈R

∣∣∣∣Em [V̂ (ψ)
]
− Em

[
V̂target

] ∣∣∣∣
Em

[
V̂target

] ⩾ 0.

Proving the existence of zeros of the numerator is, therefore, sufficient to find minimizers of

the (asymptotic) absolute relative bias. The key is to notice that

Aψ−Atheo = ψ2
∑
k∈Sr

(
1− ĥkk

)
Γ̂2
k+ψ·2

∑
k∈Sr

(
1− ĥkk

)
Γ̂k+

∑
k∈Sm

ĥkk−2nm−
∑
k∈Sr

Γ2
k := Aψ2+Bψ+C,
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with

A :=
∑
k∈Sr

(
1− ĥkk

)
Γ̂2
k,

B := 2
∑
k∈Sr

(
1− ĥkk

)
Γ̂k,

C :=
∑
k∈Sm

ĥkk − 2nm −
∑
k∈Sr

Γ̂2
k,

is a degree two polynomial. If its discriminant ∆ := B2 − 4AC is positive, the following two

roots

ψ1 :=
−B −

√
∆

2A
, and, ψ2 :=

−B +
√
∆

2A
,

minimize the asymptotic absolute bias.

C Technical lemmas

Lemma 1. The following relation holds:

β̂
(k)

= β̂ −
A−1

ΠSdkxk ϵ̂kS

1− h̃πkk
.

Proof. At the sample level, any weighted least squares solution may be written

β̂ =

(∑
k∈S

wkxkx
⊤
k

)−1∑
k∈S

wkxkyk := A−1
ΠS

∑
k∈S

wkxkyk

for some set of weights {wk}k∈S . Recall that for a full rank matrix A and two vectors u,v,

the following identity holds(
A− uv⊤

)−1
= A−1 +

A−1uv⊤A−1

1− v⊤A−1u

Hence, we get

A−1
ΠS(k) =

{
AΠS − wkxkx

⊤
k

}−1
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= A−1
ΠS +

A−1
ΠSwkxkx

⊤
kA

−1
ΠS

1− x⊤
kA

−1
ΠSwkxk

= A−1
ΠS +

A−1
ΠSwkxkx

⊤
kA

−1
ΠS

1− hkk(w)
,

where hkk(w) := x⊤
kA

−1
ΠSwkxk denotes the weighted leverage of element k. Therefore,

β̂
(k)

= A−1
ΠS(k)

∑
l∈S
l ̸=k

wlxlyl

=

{
A−1

ΠS +
A−1

ΠSwkxkx
⊤
kA

−1
ΠS

1− hkk(w)

}{∑
l∈S

wlxlyl − wkxkyk

}

= β̂ −
A−1

ΠSwkxk
1− hkk(w)

{
yk (1− hkk(w)) + x⊤

k β + hkk(w)yk

}

= β̂ −
A−1

ΠSwkxk ϵ̂kS
1− hkk(w)

.

This establishes the result. ■

Lemma 2. The following relation holds:

∑
k∈S

g2k = π
∑
k∈U

gk =
N2π2

σ2
Vm (µ̂greg) .

Proof. By definition, ∑
k∈S

g2k =
∑
k∈S

t⊤xA
−1
ΠSxkx

⊤
kA

−1
ΠStx

= π × t⊤xA
−1
ΠS

∑
k∈S

xkxk
π

A−1
ΠStx

= π × t⊤xA
−1
ΠStx.

Moreover, ∑
k∈U

gk = t⊤xA
−1
ΠSxk = t⊤xA

−1
ΠStx,

from which the first equality follows. The second equality follows from (40). ■
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