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Abstract
In recent years, there has been a significant interest in machine learning in national

statistical offices. Thanks to their flexibility, these methods may prove useful at the
nonresponse treatment stage. In this article, we conduct an empirical investigation in
order to compare several machine learning procedures in terms of bias and efficiency.
In addition to the classical machine learning procedure, we assess the performance of
ensemble approaches that make use of different machine learning procedures to produce
a set of weights adjusted for nonresponse.
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Introduction

In the last two decades, response rates have been steadily declining in medium to large-scale

surveys conducted by National Statistical Offices, raising growing concerns about the poten-

tial nonresponse bias. Unit nonresponse, where no information is available for any of the

survey variables, is typically addressed through some form of weight adjustment procedure.

The underlying principle behind weight adjustment is to inflate the weight of respondents in

such a way that they effectively represent the nonrespondents. The inflation factor is defined

as the inverse of the estimated response probability.
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The treatment of unit nonresponse starts with formulating a nonresponse model, describing

the relationship between the response indicators (equal to 1 for respondents and equal to 0 for

nonrespondents) and a vector of fully observed variables, which are those that are available

for both the respondents and the nonrespondents. Determining a suitable model also consists

of selecting of a vector of explanatory variables that are both predictive of the response in-

dicators and related to the survey variables; see Haziza and Beaumont (2017) for a discussion.

In recent years, there has been a growing interest within National Statistical Offices in the

application of machine learning techniques in the context of weighting for unit nonresponse.

Some reasons for the popularity of machine learning procedures include: (i) Machine learning

models can automatically learn and adapt from data, reducing the need for manual interven-

tion. (ii) They can capture complex, non-linear relationships between variables that may be

difficult to model using traditional parametric procedures such as logistic regression. (iii) A

number of machine learning algorithms are known for their excellent predictive performance.

However, one should exercise some caution when machine learning procedures are used for the

treatment of unit nonresponse as the survey statistician faces an estimation problem rather

than a prediction problem. If the aim lies in estimating a finite population total/mean, the

most predictive nonresponse model may not necessarily yield the best estimator in terms of

mean square error. Indeed, more accurate predictions may lead to highly dispersed weights,

potentially resulting in points estimators exhibiting a large variance. This phenomenon is

further discussed in Section 2. This is somewhat different from what is encountered in the

context of imputation for item nonresponse, whereby highly predictive procedures are ex-

pected to produce accurate estimates of population totals/means.

In this article, we investigate the use of machine learning procedures for estimating the

response probabilities. We illustrate through an empirical study that a highly predictive pro-

cedure may lead to poor estimates in terms of mean square error; see Section 2. In Section 3,

we conduct an extensive simulation study to assess the performance of adjusted estimators

in terms of bias and efficiency. Other empirical investigations on the use of machine learning

in the context of unit nonresponse for survey data can be found in Phipps and Toth (2012),
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Lohr et al. (2015), Gelein (2017), and Kern et al. (2019). In Section 4, we describe a number

of aggregation procedures, whereby the predictions produced by multiple machine learning

procedures are combined to construct a suitable aggregate. The performance of aggregation

procedures is assessed in terms of bias and efficiency. Finally, we make some remarks in

Section 5.

1 Preliminaries

Consider a finite population U of size N ; i.e., U = {1, . . . , k, . . . , N}. The aim is to estimate

the population total of a survey variable y, ty :=
∑

k∈U yk. To that end, we select a sample

S, of size n, according to a sampling design, P (S | Z), with first-order inclusion probabilities

πk, k ∈ U, where Z denotes the matrix of design information. In the absence of nonsampling

errors, a design-unbiased estimator of ty is the well-known Horvitz-Thompson estimator

t̂y,π =
∑
k∈S

dkyk, (1)

where dk = 1/πk denotes the design (basic) weight attached to unit k.

In the presence of unit nonresponse, the survey variable y is collected for a subset Sr ⊂ S.

Let Rk be a response indicator attached to unit k such that Rk = 1 if unit k responds to

the survey, and Rk = 0, otherwise. Let pk ≡ P (Rk = 1 | yk,xk, k ∈ S) denote the response

probability associated with unit k, where xk denotes a vector of fully observed variable at-

tached to unit k. We make the following assumptions: (i) The response indicators Rk are

mutually independent, k = 1, . . . , N ; (ii) The response indicators Rk are independent of the

sample selection indicators Ik, where Ik = 1 if k ∈ S, and Ik = 0, otherwise. This assumption

implies that the response probability of a unit is essentially determined by fixed respondent

characteristics. In the context of adaptative collection designs (Groves and Heeringa, 2006),

this assumption may be violated. (iii) The positivity assumption is satisfied; i.e., πk > 0 for

all k and pk > 0 for all k.
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An unadjusted estimator of ty is given by

t̂y,un = N

∑
k∈S dkRkyk∑
k∈S dkRk

≡ NŶ r. (2)

The nonresponse error of t̂y,un, defined as the difference between the unadjusted estimator

and the full sample estimator, can be expressed as

t̂y,un − t̂y,π = N

{
N̂m

N̂π

(
Ŷ r − Ŷ m

)}
, (3)

where N̂m =
∑

k∈S dk(1−Rk), N̂π =
∑

k∈S dk, and

Ŷ m =

∑
k∈S dk(1−Rk)yk∑
k∈S dk(1−Rk)

denotes the (unestimable) mean of the nonrespondents. The term N̂m/N̂π in (3) can be

viewed as an estimate of the nonresponse rate. Alternatively, the population size N in (2)

may be replaced by the estimated population size N̂π. When the data are Missing Completely

At Random (MCAR), we have E
(
Ŷ r − Ŷ m

)
≈ 0. It follows that t̂y,un is virtually unbiased

for ty. In contrast, the bias may be significant if the nonresponse rate is high and/or the

behaviour of the respondents differ systematically from that of the nonrespondents in terms

of the y-variable.

Turning to adjusted estimators, assuming that the response probabilities pk are known, an

unbiased estimator of ty is the so-called double expansion estimator (Särndal et al., 1992):

t̂y,DE =
∑
k∈S

dk
pk

Rkyk. (4)

In practice, the pk’s are unknown and are replaced with estimated response probabilities p̂k.

More specifically, we start by postulating the following nonresponse model:

E(Rk | yk,xk) = p(xk), (5)

where p(·) is an unknown function. In the case of a parametric procedure (e.g., logistic

regression), the function p(·) is predetermined, whereas it is left unspecified in the case of

nonparametric and machine learning procedures.
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An adjusted estimator of ty is the Propensity Score-Adjusted (PSA) estimator given by

t̂y,PSA =
∑
k∈S

dk
p̂(xk)

Rkyk, (6)

where p̂(xk) denotes the fitted value attached unit to k ∈ Sr. The weights adjusted for

nonresponse are denoted by w∗
k = dk/p̂(xk), k ∈ Sr. The nonresponse error of t̂y,PSA can be

expressed as

t̂y,PSA − t̂y,π = (t̂y,DE − t̂y,π)−
∑
k∈S

dk
p̂(xk)

Rkyk

(
p̂(xk)− pk

pk

)
. (7)

Since E(t̂y,DE − t̂y,π) = 0, the estimator t̂y,PSA is virtually unbiased for ty if

E

{∑
k∈S

dk
p̂(xk)

Rkyk

(
p̂(xk)− pk

pk

)}
≈ 0.

An alternative adjusted estimator of ty is the so-called Hájek estimator

t̂y,H := N

∑
k∈S

dk
p̂(xk)

Rkyk∑
k∈S

dk
p̂(xk)

Rk

. (8)

If the nonresponse model is correctly specified, we have E(
∑

k∈S
dk

p̂(xk)
Rk) ≈ N, which implies

that both t̂y,PSA and t̂y,H would exhibit the same asymptotic bias. However, they may differ

significantly in terms of variance, even in the absence of bias.

2 Estimation vs. prediction

In this section, we illustrate empirically that the most predictive model does not necessarily

yield the best estimator of ty in terms of mean square error. Indeed, including predictors that

are highly predictive of Rk may produce very small estimated response probabilities p̂k, which

may potentially result in extreme adjusted weights w∗
k. In this case, both (6) and (8) may

be inefficient. How, then, do we choose the xk variables to incorporate in the nonresponse

model? A common recommendation is to include the variables xk that are related to both the

indicator variable Rk and the survey variable y; e.g., Little and Vartivarian (2005), Beaumont

(2005) and Kim et al. (2019). When an x-variable exhibits a strong correlation with Rk but

is unrelated to y, excluding it from the nonresponse model is advisable. Indeed, including

such a variable would not effectively mitigate nonresponse bias but could potentially lead to
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a significant increase in the variance of the adjusted estimator.

To illustrate this point, we conducted a limited simulation study. We generated a finite pop-

ulation U of size N = 10, 000 with seven variables: one survey variable y and six auxiliary

variables x1, x2, . . . , x6. We first generated the x-variables according to the following distri-

butions: x1 ∼ Gamma(5, 1); x2 ∼ Gamma(1, 5); x3 ∼ Gamma(1, 6); x4 ∼ Gamma(1, 10);

x5 ∼ Gamma(1, 20); x6 ∼ Gamma(0.5, 50). Given x1, . . . , x6, we generated the y-variable

according to the linear regression model

yk = 2− 2x1k + 4x2k + ϵk,

where the errors ϵk were generated from a normal distribution with mean equal to zero and

variance equal to 225. This led to a model R2 approximately equal to 0.64.

From the population, we selected 10, 000 samples, of size n = 1, 000, according to simple

random sampling without replacement. In each sample, each unit was assigned a response

probability pk:

pk = 0.05 + 0.95 {1 + exp (−0.05x1k + 0.05x2k − 0.05x3k + 0.05x4k − 0.05x5k + 0.02x6k)}−1 .

(9)

This led to a response rate of about 55% in each sample. The response indicators Rk were

generated using a Bernoulli distribution with probability pk.

Our goal was to estimate the population total of the y-values, ty =
∑

k∈U yk. In our experi-

ment, the variables x1, . . . , x6 were fully observed, while the y-variable was prone to missing

values.

In each sample, we computed two estimators of ty:

(i) The naive estimator given by (2).

(ii) The propensity score-adjusted estimator, t̂y,PSA, given by (6), where p̂(xk) was obtained

through the score method (see Section 2.1) based on different subsets of x1, . . . , x6, and
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regression trees (see Section 2.2) based on the same subsets of x1, . . . , x6.

As a measure of bias of an estimator t̂, we computed the Monte Carlo percent relative bias

RBMC(t̂) = 100× 1

10, 000

10,000∑
b=1

(t̂(b) − ty)

ty
, (10)

where t̂(b) denotes the estimator t̂ in the bth sample, b = 1, . . . , 10, 000. We also computed

the Monte Carlo relative efficiency of t̂, using the full sample estimator t̂y,π given by (1), as

the reference:

REMC(t̂) = 100× MSEMC(t̂)

MSEMC(t̂y,π)
, (11)

where

MSEMC(t̂) =
1

10, 000

10,000∑
b=1

(
t̂(b) − ty

)2
and MSEMC(t̂y,π) is similarly defined.

In each sample, we also computed the Monte Carlo percent coefficient of variation of the

adjusted weights w∗
k = dk/p̂(xk):

CVMC(w
∗
k) = 100× 1

B

B∑
b=1

sw∗(b)

w∗
(b)

,

where nr denotes the number of respondents,

sw∗ =

√
1

nr − 1

∑
k∈Sr

(w∗
k − w∗)2

and w∗ = n−1
r

∑
k∈Sr

w∗
k. Finally, we computed the Monte Carlo mean square error of the

predictions defined as

MSEMC(p̂) = 100× 1

B

B∑
b=1

1

nr

∑
k∈Sr

(
p̂(b)(xk)− pk

)2
,

where p̂(b)(xk) denotes the estimated response probability attached to unit k in the bth sample.
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2.1 The score method

The score method (Little, 1986, Eltinge and Yansaneh, 1997; Haziza and Beaumont, 2007)

may be described as follows:

Step 1: Obtain preliminary estimated response probabilities, p̂LR(xk), k ∈ S, from a

logistic regression.

Step 2: Form C classes based on the estimated response probabilities, p̂LR(xk), using

an equal quantile method. We set C = 20, which led to classes, each of size 50.

Step 3: Adjust the weight of the respondents within a class by multiplying their design

weight dk by the inverse of the response rate observed within the same class.

Estimator t̂y,naive t̂y,PSA t̂y,PSA t̂y,PSA t̂y,PSA t̂y,PSA t̂y,PSA

x1 x1, x2 x1, . . . , x3 x1, . . . , x4 x1, . . . , x5 x1, . . . , x6

RBMC(t̂) -13.4 -12.2 -0.2 -0.8 -0.3 -1.0 -0.4
in (%)

REMC(t̂) 623 561 134 141 142 161 206
CVMC(w∗) 0 13 16 19 30 50 84

in (%)
MSEMC(p̂) 4.7 5.0 4.9 4.6 4.1 1.3 0.4

Table 1: Monte Carlo measures for several estimators of ty: The score method

The results for the score method, displayed Table 1, can be summarized as follows:

• As expected, the naive estimator was biased with a relative bias of -13.4%. This is not

surprising as the naive estimator makes no use of the variables x1 and x2, which are

related to both Rk and y.

• The propensity score estimator t̂y,PSA based on the variable x1 exhibited a smaller

bias than the naive estimator. Incorporating the variable x1 in the nonresponse model

helped in reducing the bias, as expected.

• The propensity score estimator t̂y,PSA based on the variable x1 and x2 was nearly

unbiased with a value of relative bias of about -0.2%. In terms of relative efficiency,
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this estimator was the best, with a value of RE equal to 134. It is worth noting that

the other propensity score estimators were nearly unbiased but were less efficient than

t̂y,PSA based on x1 and x2. In other words, adding x3 to x6 to the model had no impact

on the bias but led to an increase in variance.

• Since nonresponse was generated according to 9), the most predictive model of Rk was

the one that included the variables x1, . . . , x6. However, except for t̂y,PSA, based on

x1 only, the estimator t̂y,PSA based on x1, . . . , x6, was the worst in terms of relative

efficiency, with a value of RE equal to 209. In comparison with t̂y,PSA, based on x1

and x2, this corresponds to a 55% increase in terms of mean square error. This result

suggests that the most predictive model may not necessarily translate into the best

estimator of ty. In fact, a quick look at the values of MSEMC(p̂) suggests that the

model that incorporates the variables x1, . . . , x6, led to the smallest value of MSEMC(p̂)

(about 0.4), whereas the model that incorporated x1 and x2 led to a value of MSEMC(p̂)

of 4.9, which is about 12 times larger.

• A large dispersion of the adjusted weights w∗
k led to estimators with a large variance.

This is why, in practice, limiting the dispersion of the adjusted weights w∗
k is desirable.

2.2 Regression trees

We repeated the simulation experiment with regression trees using the same setup described

in Section 2.1. The simulation study was conducted using the R package rpart. Regression

trees require the specification of some hyper-parameters such as the complexity parameter,

denoted by cp, and the minimal number of observations per terminal node, denoted by n0.

The complexity parameter is used to control the size of the tree and to prevent overfitting.

We used different values of cp: 0; 0.001; and 0.01 (the default value). We also used two values

for n0: 10 and 25. With a value of cp set to 0.001 (say), any split that does not decrease the

overall lack of fit by a factor of 0.001 is not attempted. Large values of cp will thus lead to

shallower trees.

Results for n0 = 10 and n0 = 25 are shown in Table 2 and Table 3, respectively. They can
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be summarized as follows:

• For n0 = 10, we note that the estimator t̂y,PSA, based on x1 and x2, was nearly unbiased

for cp = 0 and cp = 0.001. However, the bias of t̂y,PSA increased as more variables were

incorporated into the tree procedure. For instance, for cp = 0, the estimator t̂y,PSA,

based on x1 and x2, showed a value of relative bias of about -0.6%, whereas the estimator

t̂y,PSA, based on x1-x6 showed a relative bias of about -6.5%. The same was true for

all values of cp. This is due to the fact that, as the number of predictors increased,

the proportion of splits involving either x1 or x2 (the variables associated with both Rk

and y) diminished. For instance, for cp = 0 and only x1 and x2 were used as predictors,

100% of the splits used either x1 or x2. But when all the variables x1-x6 were included,

only 16.8% of the splits used x1, and 13.5% of the splits used x2. In other words, above

70% of the splits did not use either x1 or x2.

• With an increasing value of cp, the tree became progressively shallower, which led to

larger biases. For instance for cp = 0, the estimator t̂y,PSA based on x1 and x2, showed a

value of RB equal to -0.6%, whereas it was equal to -8.0% for cp = 0.01. Fewer terminal

nodes limit the tree’s ability to capture local behaviors effectively.

• Results for n0 = 25 followed similar patterns as those obtained for n0 = 10, except that

the propensity score estimator was biased in all the scenarios.

• Like the score method, the value of MSEMC(p̂) decreased as more predictors were in-

corporated in the model. Similarly, the dispersion of the adjusted weights w∗
k increased

as more predictors were included.

2.3 Discussion

In Sections 2.1 and 2.2, we performed propensity score estimation based on the score method

and regression trees, respectively. For regression trees, the bias of t̂y,PSA increased as more

predictors were included in the model. This pattern was not observed for the score method.

Indeed, in the case of the score method, the weighting classes were based on the preliminary

score p̂LR(xk), which can be viewed as a scalar summary of all the information contained in
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RBMC(t̂) in (%) REMC(t̂) in (%) MSEMC(p̂) CVMC(w∗) in (%)
cp = 0

t̂y,PSA

x1
-11.1 572 4.0 29

t̂y,PSA

x1, x2
-0.6 116 4.3 36

t̂y,PSA

x1, . . . , x3
-1.7 140 3.9 43

t̂y,PSA

x1, . . . , x4
-2.6 162 3.8 48

t̂y,PSA

x1, . . . , x5
-4.1 206 3.4 53

t̂y,PSA

x1, . . . , x6
-6.5 318 2.9 62

cp = 0.001

t̂y,PSA

x1
-11.2 577 3.9 29

t̂y,PSA

x1, x2
-0.7 117 4.2 36

t̂y,PSA

x1, . . . , x3
-1.8 142 3.8 43

t̂y,PSA

x1, . . . , x4
-2.8 164 3.7 48

t̂y,PSA

x1, . . . , x5
-4.1 209 3.3 53

t̂y,PSA

x1, . . . , x6
-6.6 322 2.9 62

cp = 0.01

t̂y,PSA

x1
-13.7 802 3.0 5

t̂y,PSA

x1, x2
-8.0 414 3.0 14

t̂y,PSA

x1, . . . , x3
-7.3 360 2.9 23

t̂y,PSA

x1, . . . , x4
-7.3 341 2.8 33

t̂y,PSA

x1, . . . , x5
-7.8 364 2.6 39

t̂y,PSA

x1, . . . , x6
-10.0 519 2.4 49

Table 2: Monte Carlo measures for several estimators of ty: Regression trees with n0 = 10
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RBMC(t̂) in (%) REMC(t̂) in (%) MSEMC(p̂) CVMC(w∗) in (%)
cp = 0

t̂y,PSA

x1
-11.6 608 3.1 15

t̂y,PSA

x1, x2
-3.1 168 3.1 20

t̂y,PSA

x1, . . . , x3
-4.6 210 2.8 26

t̂y,PSA

x1, . . . , x4
-5.9 263 2.7 29

t̂y,PSA

x1, . . . , x5
-7.4 337 2.5 33

t̂y,PSA

x1, . . . , x6
-10.0 514 2.2 41

cp = 0.001

t̂y,PSA

x1
-11.8 625 3.1 14

t̂y,PSA

x1, x2
-3.4 174 3.1 19

t̂y,PSA

x1, . . . , x3
-4.7 214 2.8 26

t̂y,PSA

x1, . . . , x4
-6.0 268 2.7 29

t̂y,PSA

x1, . . . , x5
-7.4 341 2.5 33

t̂y,PSA

x1, . . . , x6
-10.1 517 2.2 41

cp = 0.01

t̂y,PSA

x1
-14.0 824 3.1 2

t̂y,PSA

x1, x2
-9.2 489 3.0 9

t̂y,PSA

x1, . . . , x3
-8.2 403 2.8 17

t̂y,PSA

x1, . . . , x4
-8.7 419 2.7 24

t̂y,PSA

x1, . . . , x5
-9.2 447 2.5 30

t̂y,PSA

x1, . . . , x6
-11.6 632 2.3 38

Table 3: Monte Carlo measures for several estimators of ty: Regression trees with n0 = 25
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x1, . . . , x6. Therefore, the sample partitions obtained through the score method implicitly

made use of all the predictors, and in particular, x1 and x2. This is why t̂y,PSA was virtually

unbiased as long as at least both x1 and x2 were included. For regression trees, the situation

is more intricate. Indeed, when all the predictors x1, . . . , x6 were included, we ended up with

trees that made use of x1 and x2 for only a fraction of the splits. As a result, we were not

able to eliminate the nonresponse bias as effectively.

These results suggest we should exercise caution if variable selection is performed prior to

nonresponse adjustment. Indeed, if the variable selection method resulted in the elimination

of some important predictors (which are those that are related to both Rk and y) in the

presence of other predictors that are highly related to Rk but not to y, the propensity score-

adjusted estimator may likely suffer from an appreciable bias.

3 Simulation study

We conducted an extensive simulation study to assess the performance of several machine

learning procedures (see Section 3.2 below) in terms of bias and efficiency.

3.1 The setup

We generated several finite populations of size N = 50, 000. Each population consisted of a

survey variable Y and seven auxiliary variables, four of which were continuous and the remain-

ing being discrete. First, the continuous auxiliary variables were generated as follows: X(s) ∼

Gamma(3, 2), X(c1) ∼ N(0, 1); X(c2) ∼ Gamma(3, 2) and X(c3) ∼ Gamma(3, 2). The dis-

crete auxiliary variables were generated as follows: X(d1) ∼ MN(N, 0.5, 0.05, 0.05, 0.1, 0.3);

X(d2) ∼ B(0.5) and X(d3) ∼ UD(1; 5), where MN, B and UD denote the multinomial, the

Bernoulli and the uniform discrete distributions, respectively. Two configurations for these

predictors were used: (i) The predictors were independently generated; (ii) The predictors

were generated through Gaussian copulas to produce a level of correlation among them.

Given the values of the auxiliary variables, we generated several y-variables according to the

13



following two models:

yk = γ0 + γ
(s)
1 X

(s)
1k + γ

(c)
1 X

(c)
1k + γ

(c)
2 X

(c)
2k + γ

(c)
3 X

(c)
3k +

5∑
j=2

γ
(d)
1j (1{X(d)

1k =j})

+ γ
(d)
2 X

(d)
2k +

5∑
k=2

γ
(d)
3j (1{X(d)

3k =j}) + εk (12)

and

yk = δ1X
(c)
2k + δ2(X

(c)
2k )

2(1−1{X(d)
3k =2}∪{X(d)

3k =3})+ log(1+ δ3X
(c)
2k )(1{X(d)

3k =2}∪{X(d)
3k =3})+ εk, (13)

where ε ∼ N(0, σ2
ε). Model (12) is linear in the regression coefficients, whereas Model (13)

is nonlinear.

Each population was partitioned into ten strata on the basis of the auxiliary variable X(s)

using an equal quantile method. From each population, we selected B = 5, 000 samples

according to stratified simple random sampling without replacement of size n = 1, 000 based

on Neyman’s allocation.

For the populations generated according to the linear model (12), we simulated the case of

both a (virtually) non-informative sampling design and an informative sampling design. For

the non-informative sampling design, the correlation between the y-variable and the design

weights dk was equal to 0.02, whereas it was equal to approximately 0.3 for the informa-

tive sampling design. For the non-informative sampling design, the vector of coefficients(
γ0, γ

(s), γ
(c)
1 , γ

(c)
2 , γ

(c)
3 , γ

(d)
12 , γ

(d)
13 , γ

(d)
14 , γ

(d)
15 , γ

(d)
22 , γ

(d)
32 , γ

(d)
33 , γ

(d)
34 , γ

(d)
35

)
was set to

(−0.2, 5.0, 5.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5) and to

(−10, 5.0, 5.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5) for the informative sampling design.

Finally, for the nonlinear model (13), the vector of coefficients (δ0, δ1, δ2, δ3) was set to

(4, 4, 4, 4) . This led to 6 different survey variables y; see Table 4. Our goal was to esti-

mate the population total of each of the six survey variables, ty =
∑

k∈U yk.

In each sample, nonresponse to the survey variable Y was generated according to six nonre-

sponse mechanisms. That is, for each k ∈ S, we assigned a response probability pk according

to the following six models:
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Linear model Nonlinear model
Independent
predictors

Correlated
predictors

Independent
predictors

Correlated
predictors

Informative sampling ✓ ✓ X X
Noninformative sampling ✓ ✓ ✓ ✓

Table 4: Strategies used to generate the six survey variables

NR1: p
(1)
k = logit−1(−0.8 − 0.05X

(s)
1k + 0.2X

(c)
1k + 0.5X

(c)
2k − 0.05X

(c)
3k +

∑5
k=2 0.2(1{X(c)

1k =k}) +

0.2X
(d)
2k +

∑5
k=2 0.3(1{X(d)

3k =k}));

NR2: p
(2)
k = 0.1+0.9 logit−1(0.5+0.3X

(s)
1k −1.1X

(c)
1k −1.1X

(c)
2k −1.1X

(c)
3k +

∑5
k=2 0.8(1{X(c)

1k =k})+

0.8X
(d)
2k +

∑5
k=2 0.8(1{X(d)

3k =k}));

NR3: p
(3)
k = 0.1 + 0.9 logit−1

(
−1 + sgn (Xc

1k) (X
c
1k)

2 + 3× 1{
X

(d)
1k <4

}
∩
{
X

(d)
2k =1

});

NR4: p
(6)
k = 0.1+0.6 logit−1(0.85X

(s)
1k +0.85X

(c)
2k −0.85X

(c)
3k −

∑5
k=2 0.2(1{X(c)

1k =k})+0.2X
(d)
2k −∑5

k=2 0.3(1{X(d)
3k =k}));

NR5: p
(4)
k = 0.55 + 0.45 tanh (0.05yk − 0.5);

NR6: p
(5)
k = 0.1 + 0.9 logit−1 (0.2yk − 1.2).

The parameters in each nonresponse model were set so as to obtain a response rate approx-

imately equal to 50% in each sample. The response indicators R
(j)
k were generated from a

Bernoulli distribution with probability p
(j)
k , j = 1, . . . , 6. Note that the nonresponse mecha-

nism NR1-NR4 involved x-variables only. Below, they will be referred to as ignorable non-

response mechanisms. For the nonresponse mechanism NR5 and NR6, we used the generic

notation y in the definition of the response probability pk. Recall that we have generated six

different survey variables (see Table 4). The y-variable in the expressions of pk in NR5 and

NR6 stands for the first survey variable when we are interested in estimating the population

total of the first survey variable, stands for the second survey variable when we are interested

in estimating the population total of the second survey variable, and so on. Below, NR5 and

NR6 will be referred to as non-ignorable nonresponse mechanisms.
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Overall, we ended up with 6 × 6 = 36 scenarios, each corresponding to a given survey

variable and a given nonresponse mechanism. Out of the 36 scenarios, 24 were of the ignor-

able type, and 12 were of the non-ignorable type.

Figure 1: Distribution of response probabilities in the population U

To estimate the response probabilities pk, we used the following machine learning procedures

based on the set of explanatory variables, X(s), X(c)
1 , X(c)

2 , X(c)
2 , X(d)

1 , X(d)
2 and X

(d)
3 :

(a) Logistic regression;

– logit.

(b) Logistic regression with variable selection based on LASSO; e.g., see Hastie et al.

(2001). This procedure was implemented using the R package glmnet.
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– logit_lasso: the amount of penalization λ was obtained using a 10-fold cross

validation.

(c) Classification and regression trees; see Breiman et al. (1983). This procedure was

implemented using the R package rpart.

– cart20: Unpruned trees, cp = 0, at least 20 observations in each leaf.

– cart30: Unpruned trees, cp = 0, at least 30 observations in each leaf.

– cart40: Unpruned trees, cp = 0, at least 40 observations in each leaf.

– cart50: Unpruned trees, cp = 0, at least 50 observations in each leaf.

(d) Random forests; e.g., see Breiman (2004). This procedure was implemented using the

R package ranger.

– rf1: Probabilities estimation trees, at least 10 observations in each leaf, 100 trees.

– rf2: Probabilities estimation trees, at least 10 observations in each leaf, 500 trees.

– rf3: Probabilities estimation trees, at least 30 observations in each leaf, 100 trees.

– rf4: Probabilities estimation trees, at least 30 observations in each leaf, 500 trees.

– rf5: Probabilities estimation trees, at least 30 observations in each leaf, 500 trees,

variable used for the allocation is selected with probability 1 at each split.

(e) k-nearest neighbors; This procedure was implemented using the R package caret.

– knn: k determined by 10-fold cross validation with k ∈ {3, . . . , 12}.

– knn_reg: k determined by 10-fold cross validation with k ∈ {3, . . . , 30}.

(f) Bayesian additive regression tree; e.g., see Chipman et al. (2010). These procedures

were implemented using the R packages dbarts and BART.

– bart Bart as a classification method with parameters described in Chipman et al.

(2010) for all priors.

– bart_reg: Bart as a regression method with parameters described in Chipman et

al. (2010) for all priors.
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(g) Extreme Gradient Boosting (XGBoost); see Chen and Guestrin (2016). This procedure

was implemented using the R package xgboost.

– xb1: 500 trees, Γ = 10, proportion for subsets : 75 %, learning rate : 0.5, max

depth: 2.

– xgb2: 2000 trees, Γ = 2, proportion for subsets : 100 %, learning rate : 0.5, max

depth : 2.

– xgb3: 1000 trees, Γ = 2, proportion for subsets : 75 %, learning rate : 0.01, max

depth : 1.

– xgb4: 500 trees, Γ = 10, proportion for subsets : 75 %, learning rate : 0.05, max

depth : 3.

(h) Support vector machine; This procedure was implemented using the R package e1071.

– svm1: ν−SVM with a Gaussian kernel, ν = 0.7, γ = 0.025.

– svm2: ν−SVM with a linear kernel, ν = 0.7.

(i) Cubist algorithm; see Quinlan (1992; 1993). This procedure was implemented using

the R package Cubist.

– cb1: Unbiased, 100 rules, with extrapolation, 10 committees.

– cb2: Unbiased, 100 rules, without extrapolation, 10 committees.

– cb3: Biased, 100 rules, with extrapolation, 10 committees.

– cb4: Unbiased, 100 rules, with extrapolation, 50 committees.

– cb5: Unbiased, 100 rules, with extrapolation, 100 committees.

(j) Model-based recursive partitioning; see Zeileis et al. (2008). This procedure was im-

plemented using the R package partykit.

– mob: logit model fitted, X(s) for stratification.

This led to 28 machine learning procedures. The choice of packages we made to implement

the method is somewhat subjective. For some machine learning procedures, several packages
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are available on CRAN. We acknowledge that there may be more efficient packages than the

ones we used. The hyperparameters were chosen to ensure a variety of combinations com-

monly encountered in practice. The goal was to better understand the behavior of machine

learning procedures when the hyperparameters were varied.

For some scenarios, some machine learning procedures produce extremely small estimated

response probabilities or probabilities that exceed 1. To address this, we implemented a trim-

ming procedure, which ensured that the estimated response probabilities lay in the range of

[0.025, 1]. The estimated response probabilities that did not undergo truncation were then

adjusted, so that the sum of estimated response probabilities after trimming was equal to

the sum before trimming.

In each sample, we computed two estimators: (i) the propensity score-adjusted estimator,

t̂y,PSA given by (6) and (ii) The Hájek estimator, t̂y,H given by (8). As a measure of bias

of an estimator t̂y, we computed its Monte Carlo percent relative bias given by (10). As a

measure of efficiency, we computed the Monte Carlo relative efficiency, using the complete

data estimator t̂y,π, as the reference; see Expression (11).

3.2 Simulation results

Tables 5 and 6 show some Monte Carlo descriptive statistics regarding the relative efficiency

(RE) for the PSA and Hájek estimators, respectively, across all the 36 scenarios: the min-

imum (Min), the first quartile (Q1), the median (Median), the third quartile (Q3) and the

maximum (Max). In Tables 5 and 6, the machine learning procedures are ordered from the

best to the worst with respect to the median percent RE (the median of the 36 RE-values).

Figures 2 and 3 display the median percent absolute relative bias on the x-axis and the

median percent RE on the y-axis for the PSA estimator; see Figures 4 and 5 for the Hájek

estimator.

From Table 5, we note that three procedures stood out in terms of relative efficiency: BART,

random forests, and XGboost. The commonly employed score method did not yield impres-
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sive results, with a median percent RE of about 1236. In the best-case scenario, it exhibited

a minimum RE of 318, which was significantly higher than that of the best procedures that

exhibited a minimum RE between 130 and 160. Similarly, in the worst-case scenario, it ex-

hibited a value of a maximum RE of 20307, which was considerable. In contrast, the best

procedures exhibited a maximum RE ranging between 1800 and 2300 approximately in the

worst scenario. Finally, the procedures mob, cubist, and support vector machines performed

the least favorably in our experiments. While we were unable to find a set of hyper-parameters

for which they worked well, this does not mean that these methods would perform as poorly

as they did with other sets of hyperparameters. For the 24 ignorable mechanisms, Figure 2

suggests that regression trees (cart) performed well in terms of median absolute RB but that

they were not the most efficient in terms of RE. A similar behavior was observed for the 12

nonignorable mechanisms; see Figure 5.

Results for the Hájek estimator in Table 6 were similar to those for the PSA estimator.

Again, the best machine learning procedures were: XGboost, BART, and random forests.

These procedures had similar performances in terms of median percent RE. BART was es-

pecially good in the worst scenario with values of maximum percent RE equal to 1710 and

1743, which was significantly smaller than the corresponding values for XGboost and random

forests. Again, the score method was outperformed by these three procedures in virtually all

the scenarios.

Figures 6 and 7 display side-by-side boxplots of the distribution of the PSA estimator and

the Hájek estimator for the 24 ignorable nonresponse mechanisms and the 12 nonignorable

nonresponse mechanisms, respectively. For the 24 nonignorable nonresponse mechanisms,

our analysis reveals that, in the worst-case scenarios, the Hájek estimator consistently out-

performed the PSA estimator, as depicted in Figure 6. The Hájek estimator was thus more

robust to varying conditions than the PSA estimator, at least in our experiments. In the

case of the 12 nonignorable mechanisms, the results were not as clear-cut. For most ma-

chine learning procedures (except Xgboost1, Xgboost2, and Xgboost4), we observed that the

Hájek estimator performed slightly better than the PSA estimator in the worst-case scenarios.
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ML procedure Min Q1 Median Q3 Max Mean
bart 1 144 194 280 635 1845 489
rf 2 130 211 281 660 2799 561
rf 1 131 213 282 657 2781 560
xgb 2 132 197 295 621 2054 515
rf 5 154 207 304 717 2331 576
xgb 1 172 215 326 653 2253 552
rf 4 157 212 329 782 2359 579
rf 3 158 213 330 784 2351 579
xgb 3 171 231 336 837 2227 589
xgb 4 178 238 338 719 2574 607
knn 1 174 243 346 778 2174 576
bart 2 169 215 359 853 2087 628
knn 2 157 219 360 740 3543 693
cart 20 132 255 490 716 1904 611
cart 50 139 242 504 867 2185 602
cart 30 130 240 508 704 1924 608
cart 40 132 238 509 785 2050 605
logit 145 216 521 1233 4948 952
logit lasso 149 221 553 1242 4556 898
mob 146 254 579 1355 5287 1037
cubist 2 128 339 614 1642 37936 3128
cubist 5 151 290 648 1368 24764 1978
cubist 4 151 290 655 1396 25358 2010
cubist 1 156 323 708 1612 29335 2287
score 318 746 1236 1811 20307 2495
svm 2 251 673 2188 11525 140425 20169
svm 1 251 669 2327 9823 96179 10414
cubist 3 312 4034 10242 35640 13988674 445022

Table 5: Descriptive statistics about percent RE across the 36 scenarios: PSA estimator
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ML procedure Min Q1 Median Q3 Max Mean
xgb 4 180 221 304 732 2912 599
bart 1 158 200 306 556 1710 478
bart 2 176 205 307 656 1743 522
xgb 1 175 209 307 643 2457 547
rf 4 174 205 314 729 2355 569
rf 3 173 205 315 729 2347 568
xgb 3 175 206 324 709 2447 577
xgb 2 159 199 325 572 2057 517
rf 5 167 215 326 770 2074 581
rf 2 170 203 328 657 2462 558
rf 1 170 204 330 656 2453 557
knn 1 179 223 337 628 1867 534
cart 50 148 211 368 602 2195 514
cart 40 141 216 380 621 2040 512
knn 2 202 238 385 818 3379 714
cart 30 140 220 400 629 1905 512
cart 20 146 237 402 621 1889 522
logit lasso 145 201 414 1031 1811 613
mob 141 213 456 1054 1793 648
logit 139 201 457 953 1903 607
cubist 2 147 293 522 882 3857 768
cubist 5 151 254 525 799 3262 713
cubist 4 152 256 527 799 3276 715
cubist 1 153 261 546 800 3348 729
score 224 505 723 1353 8356 1332
cubist 3 224 582 812 1183 4528 1106
svm 2 189 358 910 1401 5024 1161
svm 1 189 357 952 1482 4884 1122

Table 6: Descriptive statistics about percent RE across the 36 scenarios: Hájek Estimator
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Figure 2: Median percent RE vs. median percent RB for the 24 ignorable mechanisms: PSA
Estimator
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Figure 3: Median percent RE vs. median percent RB for the 12 nonignorable mechanisms:
PSA Estimator
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Figure 4: Median percent RE vs. median percent RB for the 24 ignorable mechanisms: Hájek
Estimator
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Figure 5: Median percent RE vs. median percent RB for the 12 nonignorable mechanisms:
Hájek Estimator
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4 Aggregation procedures

Aggregation procedures refer to techniques used to combine the predictions from multiple

models into a single, more robust, and accurate prediction. These methods are commonly

used in ensemble learning, where the goal is to improve a model’s performance by leverag-

ing the strength of multiple models (Nemiroski, 2000). In the context of unit nonresponse,

multiple machine learning procedures are used to obtain a set of estimated response proba-

bilities for each sample unit. These probabilities are then combined in some way to obtain

an aggregate score. Why use an ensemble method? In general, there are no machine learning

procedures that outperform all the other competitors in all the scenarios. Indeed, a given

machine learning procedure may do well in a particular scenario but may perform poorly in

another scenario. However, one cannot tell in advance which procedure will perform well for

a specific scenario. An aggregation procedure may outperform a single procedure in terms of

bias and efficiency; e.g., see Tsybakov (2003).

We describe two aggregation procedures for combining predictions from multiple models. Let

p̂
(m)
k (xk) be the estimated response probability attached to unit k obtained through the mth

machine learning procedure m = 1, . . . ,M . For both aggregation procedures, the aggregate

score for unit k is defined as

p̂aggk =
M∑

m=1

ωmp̂
(m)
k (xk), (14)

such that ωm ≥ 0 for all m = 1, . . . ,M, and
∑M

m=1 ωm = 1. That is, the aggregate score p̂aggk ,

is expressed as a convex combination of the individual predictions obtained from each of the

M models. Assuming that the estimated response probabilities p̂
(m)
k (xk),m = 1, · · · ,M, all

lie between 0 and 1, the convex combination (14) ensures that the aggregate score p̂aggk also

lies between 0 and 1. Machine learning procedures that perform well will be assigned a larger

weight ωm in the weighted average (14). The resulting aggregated PSA estimator is defined

as

t̂PSA,agg :=
∑
k∈S

dk
p̂aggk

Rkyk.

We now described two standard weighting procedures: linear weighting (Bunea et al., 2006,

2007) and exponential weighting (Buckland et al., 1997):
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(1) Linear weighting.

The aggregate score p̂aggk attached to unit k is obtained by fitting a linear regression

model with the response indicator Rk as the dependent variable and p̂
(1)
k (xk), . . . , p̂

(M)
k (xk),

as the set of explanatory variables. Let β̂1, . . . , β̂M , denote the resulting estimated re-

gression coefficients. Under linear weighting, to ensure a convex combination, the

aggregation weights ωm in (14) are defined as

ωm = β̂2
m/

M∑
j=1

β̂2
j . (15)

The choice (15) ensures that the weights ωm are positive and sum to one. As a result, if

the estimated response probabilities p̂(1)k (xk), . . . , p̂
(M)
k (xk), lie in the interval (0, 1], the

aggregated probability will also lie in the interval (0, 1], which is a desirable property.

(2) Exponential weighting.

Let L(·) denote a loss function. The exponential weights ωm are given by

ωm :=
exp {−n · T ·L (p̂m)}∑M
j=1 exp {−n · T ·L (p̂j)}

, m = 1, 2, . . . ,M, (16)

where T > 0 is a hyper-parameter, often referred to as the temperature. When T −→ 0,

the weights ωm in (14) tend to be uniform, whereas T −→ ∞ will assign non-zero

weights to the machine learning procedures exhibiting a small loss. For a discussion

about the choice of the temperature, see Leung and Barron (2006) and Lecué (2007).

We consider the following two loss functions:

(a) The misclassification error:

Lmis (p̂m) :=
1

n

∑
k∈S

1R̂m(xk )̸=Rk
,

where R̂m(xk) := 1p̂m(xk)⩾1/2.

(b) The cross-entropy loss:

Lcross (p̂m) :=
1

n

∑
k∈S

{−Rk log (p̂m(xk))− (1−Rk) log (1− p̂m(xk))} .

To prevent the issue of overfitting, we consider a sample-splitting scheme that involves train-

ing/aggregation. More specifically, the aggregation procedures are implemented as follows:
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Step 1: Shuffle the units in DS := {(xk, Rk) ; k ∈ S} and select a fitting proportion ρ ∈ (0; 1).

Let nfit := n× ρ. For simplicity, we assume that nfit is an integer.

Step 2: Partition the data DS into a fitting set, Dfit, of size nfit, and an aggregation set Dagg,

of size nagg := n− nfit.

Step 3: Fit the M models based on Dfit to obtain the estimated response probabilities

p̂1 (·, Dfit) , p̂2 (·, Dfit) , · · · , p̂M (·, Dfit).

Step 4: Determine the aggregation weights ωm,m = 1, . . . ,M, on the aggregation set Dagg,

where ωm is either given by (15) or (16). That is, the weights ωm are computed with the

loss L(·) computed on Dagg with predictors p̂m (·, Dfit) fitted on Dfit, m = 1, . . . ,M .

Step 5: Output the aggregated response probabilities estimator p̂agg (· , Dfit, Dagg) ≡ p̂agg given

by

p̂agg :=
M∑

m=1

ωm(Dagg) · p̂m (xk, Dfit) , k ∈ Sr.

To assess the performance of aggregation procedures, we used the same setup as the one

described in Section 3.1. Again, we had 6× 4 = 24 ignorable scenarios and 6× 2 = 12 nonig-

norable scenarios. The aggregation procedures were based on the following M = 5 machine

learning procedures: Xgboost1, cart50, rf3, knn2, and Score; see Section 3.1. The fitting pro-

portion was set to 0 (without splitting) and to 0.7 (with splitting). The temperature T was

set to 1/E(nagg) = 1/300. We used both linear weighting, whereby the aggregation weights

ωm are given by (15) and exponential weighting based on both Lmis and Lcross, whereby the

weights ωm are given by (16).

Tables 7 and 8 show some Monte Carlo descriptive statistics regarding the relative efficiency

(RE) and the percent relative bias (RB) for the PSA estimator for the 24 ignorable scenarios

and the 12 nonignorable scenarios, respectively. Tables 9 and 10 show the same Monte Carlo

descriptive statistics corresponding to the Hájek estimator.

We begin by discussing the results pertaining to the PSA estimator. From Table 7, we note

that the aggregation procedures based on exponential weighting performed almost as well

31



as the best procedure, here rf3. For the 12 nonignorable nonresponse mechanisms, Table

8 shows that all the aggregation procedures outperformed each machine learning procedure

individually. Similar observations can be made about the Hájek estimator; see Tables 9 and

10. In our experiments, exponential weighting was slightly more efficient than linear weight-

ing. The effect of aggregating the predictors under splitting had limited effect in the case

of exponential weighting. On the other hand, a careful examination of Tables 7-9 and 10

suggests that, in the of linear aggregation, the splitting procedure had a significant impact of

the relative efficiency of the aggregated estimators in the worst-case scenarios. For instance,

from Table 7, we note that linear weighting exhibited a value of RE of about 2130 in the worst

case when splitting was omitted as opposed to 889 when splitting was performed. Tables

8-10 also exhibit the same phenomenon. Exponential weighting, however, does not follow this

pattern: both the splitting and non-splitting versions exhibited similar performances in all

our scenarios. The difference between the performance of linear with and without splitting

seemed to be caused by significant differences in median absolute RB: for instance, in Table

7, the absolute RB in the worse case was equal to 22% for linear weighting with splitting,

against 64% for linear weighting without splitting. Further research is needed to investigate

this difference in behavior in more depth. Finally, except for Table 10, the best method with

respect to the average RE, was an aggregation procedure. Overall, the performance of aggre-

gation procedures seems promising. They allow for a data-driven "automatic" aggregation of

several estimated response probabilities, and, as our results suggest, aggregation often leads

to good efficiency in comparison to individual machine learning procedures.
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ML procedure Min Q1 Median Q3 Max Mean
rf 3 158 208 227 338 1037 298

(0.1) (2.7) (5.3) (17.9) (31.8) (10.3)
Exponential weighting: Lmis (with splitting) 160 182 234 292 1143 294

(0.5) (4.0) (11.7) (20.5) (38.4) (13.2)
Exponential weighting: Lmis (without splitting) 159 182 235 292 1114 293

(0.6) (4.0) (11.6) (19.8) (37.8) (13.0)
Exponential weighting: Lcross (with splitting) 160 183 235 292 1169 296

(0.5) (4.0) (11.3) (19.4) (37.3) (12.8)
Exponential weighting: Lcross (without splitting) 159 182 236 292 1080 291

(0.3) (4.0) (11.9) (21.1) (38.8) (13.4)
xgb 1 172 210 245 332 775 288

(0.8) (2.9) (7.6) (16.9) (23.8) (9.7)
Linear weighting (with splitting) 170 207 246 329 889 308

(0.0) (2.2) (6.9) (14.6) (22.0) (8.6)
Linear weighting (without splitting) 159 181 250 349 2130 383

(0.6) (3.4) (17.2) (24.5) (64.3) (18.8)
knn 2 172 211 266 379 2192 410

(3.1) (6.3) (18.2) (31.6) (66.9) (21.1)
cart 50 170 226 348 515 901 381

(0.0) (0.5) (3.0) (5.1) (25.9) (4.4)
score 318 489 930 1329 11111 1712

(0.6) (3.9) (14.0) (21.8) (44.3) (15.7)

Table 7: Descriptive statistics of percent RE and percent RB (in parentheses) across the 24
ignorable scenarios: the propensity score estimator
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ML procedure Min Q1 Median Q3 Max Mean
Exponential weighting: Lcross (without splitting) 150 573 765 1410 2335 1054

(3.1) (33.5) (51.1) (66.8) (111.8) (52.9)
Exponential weighting: Lmis (without splitting) 152 571 768 1423 2371 1060

(3.3) (34.2) (51.6) (66.4) (111.9) (53.1)
Exponential weighting: Lmis (with splitting) 157 576 773 1449 2425 1070

(3.8) (35.2) (52.5) (65.9) (111.9) (53.4)
Exponential weighting: Lcross (with splitting) 161 578 776 1465 2474 1078

(4.2) (35.2) (53.1) (65.5) (112.1) (53.7)
Linear weighting (without splitting) 158 555 792 1549 2913 1151

(4.6) (34.0) (55.6) (63.5) (120.4) (55.2)
Linear weighting (with splitting) 180 641 858 1333 2082 1046

(7.4) (33.9) (51.9) (68.5) (108.3) (53.4)
xgb 1 184 610 883 1348 2253 1080

(7.8) (34.0) (52.3) (70.5) (113.4) (54.9)
rf 3 204 762 904 1444 2351 1141

(10.2) (40.3) (55.3) (71.8) (111.1) (56.7)
knn 2 157 399 919 1711 3543 1260

(2.4) (24.9) (58.7) (64.5) (128.6) (56.3)
cart 50 139 783 971 1219 2185 1043

(2.8) (25.4) (43.2) (73.5) (104.7) (47.8)
score 767 1630 1816 3148 20307 4062

(19.6) (49.9) (68.7) (87.0) (137.6) (71.9)

Table 8: Descriptive statistics of percent RE and percent RB (in parentheses) across the 12
nonignorable scenarios: the propensity score estimator
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ML procedure Min Q1 Median Q3 Max Mean
rf 3 173 200 215 334 558 277

(0.2) (3.1) (5.2) (14.1) (35.8) (9.7)
Exponential weighting: Lmis (with splitting) 177 198 220 330 534 273

(0.6) (3.2) (5.8) (13.9) (38.9) (10.8)
Exponential weighting: Lcross (with splitting) 178 199 220 331 535 273

(0.7) (3.3) (5.9) (14.3) (39.3) (10.9)
Exponential weighting: Lmis (without splitting) 175 197 220 326 535 272

(0.6) (3.1) (5.6) (13.6) (38.5) (10.6)
Exponential weighting: Lcross (without splitting) 174 196 221 323 535 272

(0.6) (3.1) (5.5) (13.3) (38.1) (10.5)
Linear weighting (with splitting) 175 200 223 324 493 271

(0.2) (2.5) (5.7) (11.0) (26.5) (7.9)
xgb 1 175 191 228 323 493 266

(0.0) (2.3) (5.1) (13.2) (31.9) (8.7)
Linear weighting (without splitting) 180 200 231 392 765 325

(1.4) (4.0) (7.3) (19.8) (57.1) (15.8)
knn 2 202 234 241 411 848 359

(1.5) (5.6) (7.5) (21.5) (66.2) (17.7)
cart 50 161 201 255 379 569 298

(0.2) (1.1) (2.1) (7.2) (24.5) (5.2)
score 224 351 532 736 4629 842

(0.2) (2.6) (8.5) (21.1) (33.6) (12.0)

Table 9: Descriptive statistics of percent RE and percent RB (in parentheses) across the 24
ignorable scenarios: the Hájek estimator
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ML procedure Min Q1 Median Q3 Max Mean
cart 50 148 653 835 1051 2195 947

(3.4) (26.3) (43.3) (66.2) (105.5) (47.1)
Exponential weighting: Lcross (without splitting) 249 689 914 1281 2410 1108

(13.4) (34.0) (53.4) (70.9) (115.3) (56.3)
Exponential weighting: Lmis (without splitting) 255 702 916 1297 2419 1117

(13.8) (34.3) (53.7) (70.9) (115.6) (56.6)
Linear weighting (without splitting) 287 764 924 1404 2769 1240

(16.0) (37.8) (55.2) (70.1) (129.9) (60.1)
Exponential weighting: Lmis (with splitting) 273 731 924 1326 2420 1132

(14.9) (34.9) (54.6) (70.7) (115.7) (57.2)
Linear weighting (with splitting) 235 687 930 1258 2252 1065

(12.3) (32.0) (53.3) (70.5) (110.6) (54.8)
Exponential weighting: Lcross (with splitting) 288 761 932 1346 2433 1146

(15.8) (35.3) (55.2) (70.6) (116.1) (57.6)
xgb 1 231 669 948 1256 2457 1108

(12.0) (32.4) (53.2) (73.5) (116.5) (56.5)
rf 3 286 743 961 1423 2347 1150

(16.3) (36.5) (56.3) (68.6) (113.7) (57.4)
knn 2 391 813 985 1589 3379 1423

(21.6) (42.7) (56.8) (67.6) (144.3) (64.4)
score 656 1264 1628 2300 8356 2313

(22.5) (49.4) (60.3) (86.4) (121.9) (66.2)

Table 10: Descriptive statistics of percent RE and percent RB (in parentheses) across the 12
nonignorable scenarios: the Hájek estimator

5 Final remarks

In this paper, our primary focus was to evaluate the performance of various machine learning

procedures within the context of unit nonresponse. Our findings revealed that among the

tested methods, XGBoost, random forests, and Bayesian Additive Regression Trees (BART)

emerged as the best procedures, showcasing their potential to reduce the potential nonre-

sponse bias effectively. These procedures performed well in a wide variety of settings and,

in the case of complex or nonlinear nonresponse mechanisms, exhibited significantly better

performance than the commonly employed score method. Moreover, our study highlighted

the effectiveness of aggregation methods in improving the overall performance of machine

learning procedures.

In this work, we used aggregation procedures to combine the predictions from different ma-

chine learning algorithms. Aggregation procedures may also prove useful for combining the
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predictions produced by several architectures (that correspond to a set of hyperparameters)

of a given machine learning procedure. For instance, we may combine several predictions ob-

tained through the use of XGBoost, whereby each prediction is obtained with specific values

of the learning rate, the depth of the tree, etc. The hope is that the resulting aggregated

estimator will perform as well as the estimator obtained with the best architecture.

In practice, we often ask the question of which methods should be used or what the best

method is for our specific scenario. As argued in Section 2, the best machine learning proce-

dure is not necessarily the one that yields the best predictions. Selecting the best machine

learning procedure or the best architecture requires an optimal criterion; e.g., the estimated

mean square error of the adjusted estimator. This topic is currently under investigation.

Variance estimation for propensity score adjusted estimators constitutes another significant

gap in the existing literature. This is currently under investigation and will be presented in

a separate publication.
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