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Abstract
National statistical offices have increasingly adopted machine learning (ML) for its potential to improve survey estimates. ML
techniques offer significant advantages, notably the ability to manage high-dimensional data and to capture complex, nonlinear
relationships, thereby enhancing the overall quality of survey statistics. In this article, following the approach of Chernozhukov
et al. (2018), we describe a double/debiased machine learning framework that enables valid statistical inference when imputed
estimators are derived from ML procedures. Simulation results suggest that the proposed framework performs well in a wide
range of scenarios.
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1. Introduction

Machine learning (ML) has gained significant attention in national statistical offices for its potential to enhance the quality of
survey estimates. ML techniques offer several advantages, including the ability to handle high-dimensional data and robustness
to complex, nonlinear relationships. In particular, ML procedures may prove useful for the treatment of missing data. This is
the focus of this article. Despite these strengths, the literature on statistical inference when the imputed values are derived from
ML procedures remains relatively sparse. A notable exception is Dagdoug et al. (2025), who studied the problem of imputation
through regression trees and random forests.

In this paper, we are interested in estimating the finite population mean of a survey variable Y, which is subject to missing
values. If a parametric method (e.g., linear regression) is used to derive a set of imputed values, the resulting imputed estimator
of the mean is root-n consistent provided that the first moment of the imputation model is correctly specified. In the presence
of misspecification of the first moment, the imputed estimator may exhibit significant bias, even asymptotically.

Turning to ML methods, while they are robust to model misspecification, imputed estimators obtained from these approaches
do not typically achieve the parametric rate of convergence 1/

√
n. Many ML methods, including those based on regression

trees, neural networks, or kernel methods, converge at rates slower than 1/
√

n, often at rates that depend on the smoothness
and dimensionality of the function being estimated. This slow convergence rate is the price to pay for making weaker assump-
tions. As a result, developing statistical inference tools may prove more challenging. Indeed, point estimators derived from ML
procedures may suffer from small sample bias in the presence of overfitting. Also, deriving variance estimators that account for
sampling and nonresponse for arbitrary ML procedures may prove very challenging. Finally, since imputed estimators converge
at slower rates, they do not naturally satisfy the conditions for asymptotic normality required by the Central Limit Theorem.
This makes it difficult to justify 100 (1 − α) % normal-based confidence intervals in the same way as for estimators derived from
parametric methods.

In a seminal paper, Chernozhukov et al. (2018) showed that the challenges associated with ML can be overcome when these
methods are combined with techniques such as double machine learning. This is where doubly robust (DR) estimators play a
crucial role. DR estimators offer two opportunities to mitigate potential nonresponse bias by relying on two separate models:
(i) the outcome regression model, which predicts the survey variable based on a set of fully observed covariates, and (ii) the
propensity score model, which estimates the probability of response given the covariates. A key advantage of doubly robust
estimators is that they remain consistent if at least one of these models is correctly specified see, e.g., Robins et al. (1994),
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Haziza and Rao (2006), Kang and Schafer (2008), Cao et al. (2009), Kim and Haziza (2014). Moreover, when combined with ML
procedures, DR estimators exhibit an additional appealing feature: they can achieve the parametric convergence rate, despite
the slower rates typically observed with ML-based estimators. This property is a consequence of Neyman orthogonality—a key
ingredient highlighted in Chernozhukov et al. (2018) in the context of causal effect estimation—which ensures that estimation
errors from the ML-based nuisance functions (namely, the outcome and propensity score models) have only a second-order effect
on the point estimator of a finite population parameter. In other words, as long as the ML models converge at a sufficiently
fast rate, the DR estimator retains the root-n consistency necessary for valid inference. The combination of DR estimation and
cross-fitting further reduces overfitting bias, thereby allowing for asymptotically normal inference.

In Section 2, we revisit the problem of statistical inference in the case of an imputed estimator based on a single ML model. In
addition, we conduct a limited simulation study to illustrate the issue of the slow convergence rate inherent to ML methods.
In Section 3, following the framework of Chernozhukov et al. (2018), we discuss doubly robust estimation of a finite population
mean. We propose point and variance estimation procedures based on cross-fitting and establish the theoretical properties of the
cross-fitted point estimators. The results from a simulation study assessing the performance of point and variance estimators
and the coverage rate of normal-based confidence intervals are presented in Section 4. We conclude the article with some final
remarks in Section 5.

2. Statistical inference based on a single imputation model

Consider a finite population U = {1, · · · , k, · · · , N} of size N . We are interested in estimating the finite population mean of
a survey variable Y , µ = N−1

∑
k∈U

yk. We select a sample S, of size n, according to a sampling design F(I | Z), where Z
denotes the matrix of design information available prior to sampling for all the population units, and I = (I1, · · · , Ik, · · · , IN )⊤

denotes the N -vector of sample selection indicators such that Ik = 1 if k ∈ S and Ik = 0, otherwise. The first-order and
second-order inclusion probabilities are defined as πk = E(Ik | Z) and πkℓ = E(IkIℓ | Z), respectively. The full sample estimator
of µ is the Horvitz–Thompson estimator given by µ̂F = N−1

∑
k∈S

wkyk, where wk := π−1
k

denotes the design weight attached
to unit k.

In practice, the variable Y is prone to missing values. Let rk be a response indicator for unit k ∈ U such that rk = 1 if yk is
observed, and rk = 0 if yk is missing. Let r be the N -vector containing rk in its k-th element. We define the set of respondents
to item Y as Sr := {k ∈ S ; rk = 1}, and the set of nonrespondents as Sm := {k ∈ S ; rk = 0}.

Let xk denote a vector of fully observed variables associated with k ∈ U . We restrict our attention to non-informative sampling
designs; that is, P [Ik = 1|xk, yk] = P [Ik = 1|xk], see e.g., Pfeffermann and Sverchkov (2009). To make the sampling design
noninformative, it suffices to include the design variables Z in the imputation model, if appropriate. The vectors

[
rk, yk, x⊤

k

]
k∈U

are assumed to be independent and identically distributed (i.i.d.). We further assume that the nonresponse model satisfies:
(i) The positivity assumption, i.e., there exists δ > 0 such that P [rk = 1|xk] > δ, almost surely; (ii) The Missing At Ran-
dom (MAR) assumption (Rubin, 1976), i.e., P [rk = 1| yk, xk] = P [rk = 1| xk] := p (xk) where p denotes the propensity score
function; (iii) The strong invariance property (Beaumont and Haziza, 2016), which implies that P [rk = 1|xk, I] = P [rk = 1|xk].

The relationship between the survey variable and the x-variables may be described as

yk = m(xk) + ϵk, (1)

where m(x) := E [Y |x] denotes the unknown regression function. The errors ϵk in (1) are assumed to be i.i.d. random variables,
satisfying E [ϵk|xk] = 0 and V (ϵk|xk) = σ2

k. In Sections 2.1-2.3, we revisit the problem of statistical inference for two commonly
encountered imputation procedures: Linear Regression Imputation (LRI) and Regression Tree imputation (RTI).

2.1. Point estimation
An estimator of µ after imputation is defined as

µ̂I =
∑
k∈S

wkỹk, (2)

where ỹk = rkyk + (1 − rk)m̂(xk) with m̂(xk) denoting the imputed value used to replace the missing yk. The form (2)
is convenient for data users because µ̂I is expressed as a weighted mean of observed and imputed values, making it readily
computable in practice.

For LRI, the imputed values m̂(xk) are given by m̂LR(xk) = x⊤
k β̂r, for k ∈ Sm, where

β̂r =

(∑
k∈S

wkrkxkx⊤
k

)−1∑
k∈S

wkrkxkyk
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is the ordinary least squares estimator of β based on the responding units. Under mild regularity conditions, the imputed
estimator (2) based on LRI is root-n consistent for µ, provided that the first moment of the model is correctly specified.

Turning to RTI, the prediction at a point x, denoted by m̂tree(x), is obtained by partitioning the predictor space—spanned by
the x-variables observed on the responding units—into disjoint terminal nodes according to a specified criterion. The imputed
value for k ∈ Sm belonging to the terminal node A is then computed as the average of the y-values of the responding units
belonging to the same node:

m̂T ree(x) :=
1

nrA

∑
k∈Sr :xk∈A

yk, x ∈ A,

where nrA denotes the number of respondents belonging to the terminal node A. Dagdoug et al. (2025) showed that the
estimator µ̂I , based on either RTI or random forests is mean square consistent for µ. However, while they did not provide an
explicit rate of convergence; it is generally slower than the parametric rate of 1/

√
n. The same holds true for most ML methods.

(a) Linear regression imputation: Linear model (b) Linear regression imputation: Nonlinear model

(c) Random forest imputation: Linear model (d) Random forest imputation: Nonlinear model

Figure 1: Distribution of the error of the imputed estimator across 10, 000 iterations

2.2. Rate of convergence: Empirical study
To illustrate the slow convergence of nonparametric imputation, we conducted a limited simulation study. We generated 20
independent predictors X1, . . . , X20, each from a Gamma distribution with shape parameter equal to 0 and scale parameter
equal to 10. We then repeated R = 10, 000 iterations of the following process:

1) A finite population U of size N = 20, 000 was generated, consisting of 2 survey variables, Y1 and Y2. These variables
were generated according to two models: a linear model and a nonlinear model. More specifically,

Y1 = 0.15 {(x1 − 10) + (x2 − 10) + (x3 − 10)} + N (0, 4); (Linear model)

Y2 = 5 I(x1 > 10) + 3 sin
(

5(x2 − 10)
)

+ 0.02
(

(x1 − 10)2 − 100
)

+ 2 I(x2 > 10) cos
(

7(x3 − 10)
)

+ N (0, 4); (Nonlinear model)
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In both models, the coefficient of determination R2 was set to 0.5.

2) A sample S of size n ∈ {100; 250; 500; 1000} was selected from U according to simple random sampling without replace-
ment.

3) In each sample, the response indicators rk were generated independently from a Bernoulli distribution with probability

p(xk) =
1
2

{
1 +

0.48 + sin
(

x1−10
10

)
+ sin

(
x2−10

10

)
+ sin

(
x3−10

10

)
3

}
, k ∈ U. (3)

The parameters in (3) were set to obtain a proportion of missing values approximately equal to 50% in each sample.

4) In each sample, we computed the imputed estimator µ̂I given by (2) based on LRI and random forests (RF). For RF,
the minimal number of observations in each terminal node and the number of trees were set to n0 = 10 and B = 250,
respectively.

5) In each sample, we computed the error µ̂I − µ for each value of n under both LR and RF. The distribution of µ̂I − µ for
the different scenarios is displayed in Figure 1.

From Figure 1, when the true model is linear, LR imputation yields nearly unbiased estimators, with errors centered around
zero and variance decreasing as the sample size increases. In contrast, RF imputation exhibits bias under the linear model,
especially for smaller sample sizes. Both the bias and the variance decrease as the sample size increases, suggesting that the
imputed estimator under RF imputation is consistent. However, we note that the rate of convergence appears to be rather slow.
When the true model is nonlinear, RF imputation performs well, producing nearly unbiased results with decreasing variance as
the sample size increases, whereas LR imputation consistently underestimates, with a bias that remains roughly constant and a
variance that shrinks with larger samples. This is not surprising, as the imputed estimator under LR imputation is inconsistent
in the nonlinear setting due to misspecification of the first moment.

2.3. Variance estimation
Several approaches have been proposed in the literature for estimating the variance of µ̂I ; see Haziza and Vallée (2020) for an
overview of variance estimation procedures for imputed survey data. In this article, we consider the so-called reverse approach
originally proposed by Fay (1991) and Shao and Steel (1999). The total variance of µ̂I can be expressed as

Vtot(µ̂I) = EV(µ̂I | X, r, y) + EV
{
E(µ̂I − µ | X, r, y) | X, r

}
, (4)

where y is the N -vector whose k-th element is yk, and X is the matrix whose k-th row is x⊤
k . Under mild regularity conditions,

the contribution to the total variance of the second term on the right hand-side of (4), is negligible if the sampling fraction n/N
is negligible (Shao and Steel, 1999). In this section, we assume that n/N is negligible so that we omit the computation of the
second term on the right hand-side of (4). Using a first-order Taylor expansion, an estimator of EV(µ̂I | X, r, y), denoted by
V̂1(µ̂I), is given by

V̂1(µ̂I) :=
1

N2

∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

ϕ̂k

πk

ϕ̂ℓ

πℓ
, (5)

where ∆kℓ = πkℓ − πkπℓ. The pseudo-value ϕ̂k, k ∈ S, in (5) is given by

ϕ̂k := m̂(xk) + rkĈk{yk − m̂(xk)}, k ∈ S, (6)

where Ĉk is equal to

Ĉk = 1 +

(∑
ℓ∈S

wℓ(1 − rℓ)xℓ

)⊤(∑
ℓ∈S

wℓrℓxℓx⊤
ℓ

)−1

xk, k ∈ S,

for LRI, and equal to

Ĉk =
N̂ (xk, S)
N̂ (xk, Sr)

, k ∈ S,

for RTI, where N̂ (x, S) :=
∑

ℓ∈S
1{xℓ∈A(x)}π−1

ℓ
and N̂ (xk, Sr) is defined similarly.

We make the following remarks: (i) For RTI, the partition of the predictor space (that varies from one sample to another) was
treated as fixed in the first-order Taylor expansion procedure. (ii) The variance estimator (5) corresponds the customary full
sample Horvitz–Thompson variance estimator applied to the pseudo-values ϕ̂k. (iii) The term Ĉk in (6) may be interpreted as
an implicit estimate of the response propensity p(xk), since under both LRI and RTI, the imputed estimator µ̂I given by (2)
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can be written in the form of a propensity score adjusted estimator, i.e., µ̂I =
∑

k∈Sr
(wk/Ĉk)yk.

As illustrated in Dagdoug et al. (2025) in the context of regression trees and random forests, the estimator V̂1(µ̂I) may
substantially underestimate the true variance, EV(µ̂I | X, r, y), in the presence of overfitting. Overfitting can produce artificially
small residuals, yk − m̂(xk), leading to variance estimators that are biased downward. In the case of LRI, overfitting may occur
when the number of predictors is large relative to the sample size. In the case of RTI, overfitting may occur when the tree grows
too deep or makes too many splits relative to the available data. To address this issue, the residuals yk − m̂(xk) are replaced
with “honest residuals” computed on a separate test set. Dagdoug et al. (2025) proposed constructing these honest residuals
by using an L-fold cross-validation procedure, described as follows:

1. Divide the treated sample S into L mutually exclusive folds, F1, F2, . . . , FL. Each fold Fj will serve as the test set once,
j = 1, . . . , L.

2. For each fold j = 1, . . . , K, define the training set as S(−j) = S \ Fj . Use the data in S(−j) to fit the outcome regression
model.

3. For each unit k in the test set Fj , obtain the prediction m̂(−j)(xk).

4. Compute the honest residuals for the units in the test set as ek,cv = yk − m̂(−j)(xk), for k ∈ Fj .

Dagdoug et al. (2025) showed empirically that, in the case of imputation through regression trees, the estimator V̂1(µ̂I) based
on the pseudo-values

ϕ̂k,cv := m̂(xk) + rkĈkek,cv , k ∈ S, (7)

led to a substantial improvement in terms of bias, and achieved coverage rates of normal-based confidence intervals close to
the nominal level. A drawback of the approach of Dagdoug et al. (2025) is that it appears difficult to generalize to arbitrary
machine learning methods. The cross-validation procedure described above is closely related to cross-fitting (e.g., Chernozhukov
et al., 2018; Wager and Athey, 2018); see Section 3.3.

3. A double/debiased imputation framework

In this section, we extend the double/debiased machine learning framework of Chernozhukov et al. (2018) to survey sampling.

3.1. Oracle doubly robust estimation
We begin by considering an oracle (unfeasible) doubly robust estimator (or AIPW estimator) of µ based on the true quantities
m(xk) and p(xk). It is defined as

µ̂aipw(m, p) =
1
N

{∑
k∈S

wkm(xk) +
∑
k∈Sr

wk
yk − m(xk)

p(xk)

}
,

=
1
N

∑
k∈S

wkηk, (8)

where
ηk = m(xk) +

rk

p(xk)
{yk − m(xk)}, for k ∈ S. (9)

It is easily seen that µ̂aipw(m, p) is unbiased for µ, in the sense E
{

µ̂aipw(m, p) − µ
}

= 0, where E(.) denotes the expectation
with respect to the joint distribution induced by the outcome regression model, the sampling design, and the propensity
score model. Moreover, under mild regularity conditions, µ̂aipw(m, p) is root-n consistent for µ. Now, using the variance
decomposition (4), the total variance of µ̂aipw(m, p) can be expressed as

Vtot(µ̂aipw(m, p)) :=
1

N2

∑
k∈U

∑
ℓ∈U

∆kℓ
ηk

πk

ηℓ

πℓ
+

1
N2

∑
k∈U

1 − p(xk)
p(xk)

σ2
k

≡ V1(µ̂aipw(m, p)) +V2(µ̂aipw(m, p)). (10)

Under mild regularity conditions, the first term on the right hand-side of (10) is O(1/n), whereas the second term is O(1/N).
Therefore, the contribution of the second term to the total variance is O(n/N), which is negligible when the sampling fraction
n/N is negligible. Assuming that V (ϵk|xk) = σ2

k is known, an unbiased estimator of V(µ̃aipw(m, p)) can be obtained by
estimating each term in (10) without bias, leading to

V̂tot(µ̂aipw(m, p)) :=
1

N2

∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

ηk

πk

ηℓ

πℓ
+

1
N2

∑
k∈Sr

wk
1 − p(xk)
{p(xk)}2 σ2

k. (11)
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Although both (8) and (11) are unfeasible in practice, they serve as the foundation for the developments in Sections 3.2 and
3.3. Finally, under some regularity conditions (e.g., Chen and Rao, 2007), it can be shown that{

V̂tot(µ̂aipw(m, p))
}−1/2

(µ̂aipw(m, p) − µ) → N (0, 1).

3.2. Doubly robust estimation based on estimated nuisance functions
As an estimator of µ, we consider a DR estimator of the form

µ̂aipw(m̂, p̂) =
1
N

{∑
k∈S

wkm̂(xk) +
∑
k∈Sr

wk
yk − m̂(xk)

p̂(xk)

}
,

=
1
N

∑
k∈S

wkη̂k, (12)

where
η̂k = m̂(xk) +

rk

p̂(xk)

{
yk − m̂(xk)

}
, for k ∈ S, (13)

with m̂(xk) denoting the predicted value of the missing yk, k ∈ S, based on some ML method, and p̂(xk) the estimated response
probability for k ∈ Sr based on another ML method. Since neither m̂(x) nor p̂(x) is of primary interest, they can be viewed as
nuisance functions, serving as intermediate steps toward the ultimate goal of estimating µ.

Assuming that the sampling fraction n/N is negligible, an estimator of Vtot(µ̂aipw(m̂, p̂)), denoted by V̂1(µ̂aipw(m̂, p̂)), is
given by the first term on the right hand-side of (11) with ηk replaced by η̂k given by (13). However, µ̂aipw(m̂, p̂) in (12)
and its associated variance estimator, V̂1(µ̂aipw(m̂, p̂)), suffer from a significant drawback: They both involve the residuals,
yk − m̂(xk), k ∈ Sr, making them vulnerable to small-sample bias in the presence of overfitting. To address this issue, it is
advisable to combine DR estimation with cross-fitting for both point and variance estimation. This is discussed in the next
section.

3.3. Doubly robust estimation based on cross-fitting
Cross-fitting proceeds according to the following steps:

1. Divide the sample S into L mutually exclusive folds, F1, F2, . . . , FL. Each fold Fj will serve as the test set once,
j = 1, . . . , L.

2. For each fold j = 1, . . . , L, define the training set as S(−j) = S \ Fj . Use the data in S(−j) to estimate the outcome
regression model m with m̂(−j) and the propensity score model p with p̂(−j).

3. For each unit k in the test set Fj , obtain the cross-fitted predictions m̂(−j)(xk) and p̂(−j)(xk).

A cross-fitted version of µ̂aipw(m̂, p̂) is given by

µ̂aipw,cf (m̂, p̂) =
1
N

{∑
k∈S

wkm̂(−j)(xk) +
∑
k∈Sr

wk

yk − m̂(−j)(xk)
p̂(−j)(xk)

}
=

1
N

∑
k∈S

wkη̂k,cf , (14)

where
η̂k,cf = m̂(−j)(xk) +

rk

p̂(−j)(xk)

{
yk − m̂(−j)(xk)

}
, for k ∈ S. (15)

Unlike the estimator (2) derived from a single ML method, the doubly robust estimator µ̂aipw,cf (m̂, p̂) achieves root-n con-
sistency, even if both m̂(x) and p̂(x) converge at a slower rate. For instance, root-n consistency is achieved if both m̂(x) and
p̂(x) converge to the corresponding targets at a rate faster than n−1/4. Theorem 1 below shows that the cross-fitted estimator
(14) is asymptotically equivalent to the oracle estimator (8), provided that the estimated nuisance functions m̂(xk) and p̂(xk)
converge to their target "fast enough". As a result, the cross-fitted estimator µ̂aipw,cf (m̂, p̂) inherits the properties of its oracle
version. In particular, the µ̂aipw,cf (m̂, p̂) is asymptotically normal with a variance asymptotically equal to Vtot(µ̂aipw(m, p));
see Expression (10).

To establish the theoretical properties of µ̂aipw,cf (m̂, p̂), we consider the asymptotic framework of Isaki and Fuller (1982). We
consider an increasing sequence of finite populations {Uv}v∈N, of sizes {Nv}v∈N, such that Uv ⊂ Uv+1, for all v ∈ N. From Uv ,
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a sample Sv is selected according to the sampling design Pv to estimate µv . The first and second-order inclusion probabilities of
Pv are denoted by {πk,v}k∈Uv and {πkℓ,v}k ̸=ℓ∈Uv , respectively. For ease of notation, the subscript v will be omitted whenever
possible. We consider the following assumptions on the sampling design.

(H1) The sampling fraction satisfies limv→∞ nv/Nv := π∗ > 0.

(H2) There exists λ > 0 such that, for all v ∈ N, mink∈Uv πk,v > λ.

(H3) The sampling covariances satisfy
lim sup

v→∞
nv max

k,l∈Uv
k ̸=l

|πkl,v − πk,vπl,v | < ∞.

Theorem 1. Consider sequences
{

µ̂aipw,cf

(
m̂v , p̂v

)}
v∈N

and {µ̂aipw,v (m, p)}v∈N of cross-fitted and oracle DR estimators,
respectively. We assume the following conditions.

(H1) The sequence of estimators {m̂v}v∈N and {p̂v}v∈N satisfy the following rate condition:

lim
n→∞

√
n × E

 1
|Fj |

∑
k∈Fj

(
m̂(−j) (xk) − m (xk)

)2

1/2

E

 1
|Fj |

∑
k∈Fj

(
p̂(−j) (xk) − p (xk)

)2

1/2

= 0, (16)

for all j ∈ [K].

(H2) The predicted probabilities are bounded away from 0, that is, there exist ρ > 0 such that, for all v ∈ N, p̂v (xk) > ρ.

Then, √
nv

{
µ̂aipw,cf,v

(
m̂v , p̂v

)
− µ̂aipw,v (m, p)

}
= op(1).

Theorem 1 suggests that the variability associated with the estimated nuisance functions m̂(xk) and p̂(xk) can be safely ignored.
As a result, an estimator of V1(µ̂aipw,cf (m̂, p̂)) in (10) is obtained from the first term on the right hand-side of (11) by replacing
ηk with η̂k,cf given by (15). We denote the resulting variance estimator by V̂1(µ̂aipw,cf (m̂, p̂)). Notice that η̂k,cf involves
the inverse of the cross-fitted estimated response propensities, p̂(−j)(xk). Very small values of these probabilities may affect
the performance of V̂1

(
µ̂aipw,cf (m̂, p̂)

)
. In such cases, trimming could be applied to mitigate the impact of extremely small

p̂(−j)(xk)-values. However, more research is needed to determine an appropriate cut-off threshold. Alternatively, one could
employ propensity stratification—also known as the score method (e.g., Little, 1986; Lunceford and Davidian, 2004; Haziza
and Beaumont, 2007)—to construct C homogeneous cells with respect to p̂(−j)(xk) and use the response rate within each cell
in place of p̂(−j)(xk) in (15). Again, this requires further investigation.

To obtain an estimator of V2(µ̂aipw,cf (m̂, p̂)) in (10), we proceed as follows:

(1) Start with the cross-fitted residuals, yk − m̂(−j)(xk) ≡ ek,cf in (15).

(2) Fit the ML procedure used to fit the outcome regression model with log(e2
k,cf ) as the dependent variable and xk a the

vector of predictors. Obtain the predicted values.

(3) Exponentiate the fitted values obtained in Step 2. Call them ẽ2
k,cf .

An estimator of V2(µ̂aipw,cf (m̂, p̂)) in (10) is given by

V̂2(µ̂aipw,cf (m̂, p̂)) =
1

N2

∑
k∈Sr

wk
1 − p̂(xk)
{p̂(xk)}2

ẽ2
k,cf . (17)

Finally, an estimator of the total variance, Vtot(µ̂aipw,cf (m̂, p̂)), is given by

V̂tot(µ̂aipw,cf (m̂, p̂)) = V̂1(µ̂aipw,cf (m̂, p̂)) + V̂2(µ̂aipw,cf (m̂, p̂)).

Remark 1. If the response propensity p(xk) were known, we could construct a cross-fitted DR estimator of the form

µ̂aipw,cf (m̂, p) =
1
N

{∑
k∈S

wkm̂(−j)(xk) +
∑
k∈Sr

wk

yk − m̂(−j)(xk)
p(xk)

}
, (18)

where m̂(xk) is obtained using any ML method. In this case, it is easily seen that E
(

µ̂aipw(m̂, p) − µ
)

= 0, regardless of the
ML method used to obtain the predictions m̂(xk). Moreover, the variance of µ̂aipw,cf (m̂, p) is asymptotically equal to (10), as
long as m̂(xk) is consistent for m(xk). In other words, no rate of convergence is required.
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3.4. Implementation through calibrated imputation
Neither µ̂aipw(m̂, p̂) or µ̂aipw,cf (m̂, p̂) is expressed in the convenient form (2). To address this issue, we propose to perform a
calibration imputation procedure (e.g., Ren and Chambers, 2002, Beaumont, 2005). We illustrate the procedure in the case of
µ̂aipw,cf (m̂, p̂) but an identical approach can be used for µ̂aipw(m̂, p̂). We start with the preliminary imputed values, m̂(xk),
and seek final imputed values m̂∗(xk), k ∈ Sm, as close as possible to the preliminary values m̂(xk), subject to the calibration
constraint

1
N

[∑
k∈S

wk

{
rkyk + (1 − rk)m̂∗(xk)

}]
= µ̂aipw,cf (m̂, p̂). (19)

That is, we determine the final imputed values m̂∗(xk), k ∈ Sm, such that∑
k∈S

G(m̂∗(xk)/m̂(xk))

is minimized subject to (19), where G is a pseudo-distance function satisfying the following properties: (i) G(m̂∗(xk)/m̂(x)) ≥ 0
and G(1) = 0; (ii) G is differentiable and the derivatives are continuous; (iii) G is strictly convex; see Deville and Särndal
(1992). Any software designed to perform calibration may be used; e.g., the SAS macro CALMAR2 (Sautory, 2003) and the
R package Icarus (Rebecq, 2016). After imputation, the data file contains a column that consists of a mixture of y-values for
the respondents and the final imputed values m̂∗(xk) for the nonrespondents. As a result, data users can readily obtain the
estimator µ̂aipw,cf (m̂, p̂) using a complete data point estimation procedure.

3.5. Summary of the proposed approach
To apply the proposed approach, we proceed as follows:

- Step 1: Select a machine learning procedure for the outcome and another for the propensity score, optimize the
hyperparameters of each method (using, for example, cross-validation). Optimizing the hyperprameters is an important
step to ensure that Condition (H1) given by (16) is satisfied.

- Step 2: Compute

µ̂aipw,cf =
1
N

[∑
k∈S

wkm̂[j](xk) +
∑
k∈Sr

wk

yk − m̂[j](xk)
p̂[j](xk)

]
.

- Step 3: Use calibrated imputation to obtain the final imputed values m̂∗(xk).

- Step 4: Estimate the variance of µ̂aipw,cf by

V̂tot(µ̂aipw,cf (m̂, p̂)) = V̂1(µ̂aipw,cf (m̂, p̂)) + V̂2(µ̂aipw,cf (m̂, p̂))

=
1

N2

∑
k∈S

∑
ℓ∈S

∆kℓ

πkℓ

η̂k,cf

πk

η̂ℓ,cf

πℓ
+

1
N2

∑
k∈Sr

wk
1 − p̂(xk)
{p̂(xk)}2

ẽ2
k,cf .

- Step 5: Compute a 1 − α% confidence interval for µ:

µ̂aipw,cf ± zα/2

√
V̂(µ̂aipw,cf ),

where zα/2 is the 1 − α/2 -quantile of the standard normal distribution.

4. Simulation study
To assess the performance of the proposed methods in terms of bias, efficiency and coverage rate, we conducted a simulation
study. First, we generated 5 mutually independent predictors X1, . . . , X5, according to a standard normal distribution. We
then repeated R = 10, 000 iterations of the following process:

1) Given the predictors X1, . . . , X5, we generated four finite populations with different values of N : 2,000; 4,000; 8,000;
16,000. Each population consisted of two survey variables, Y1 and Y2 that were generated according to

Y1 = 1 + 2x1 − 3x2
2 + 1.5x3

3 + 0.5x2
4 − x3

5 + N (0, 1);

Y2 = 20 × 1x1>0 + 10 sin(x2) + 5x2
3 + N (0, 1);
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2) A sample S was selected from each population according to simple random sampling without replacement with a sampling
fraction n/N = 10%, which led to the following values of n: 200; 400; 800; 1, 600.

3) In each sample, the missing values to the survey variable Y1 were generated independently from a Bernoulli distribution
with probability

p(xk) = 0.05 + 0.95
exp {(x1 − 0.5) + (x3 − 0.5) + (x3 − 0.5) + (x4 − 0.5) + (x5 − 0.5)}

1 + exp {(x1 − 0.5) + (x3 − 0.5) + (x3 − 0.5) + (x4 − 0.5) + (x5 − 0.5)}
, k ∈ S. (20)

The missing values to the survey variable Y2 were generated independently from a Bernoulli distribution with probability

p(xk) =
1
6

{0.5 + sin(x1) + sin(x2) + sin(x3)} , k ∈ S. (21)

In both (20) and (21), the parameters were set to obtain a proportion of missing values approximately equal to 50% in
each sample.

4) In each sample, we computed the doubly robust estimators µ̂aipw or µ̂aipw,cf given by (12) and (14), respectively based
on different combinations of ML methods. For the outcome regression model, we used random forests (RF, Breiman,
2001) with 15 observations in each terminal node and B = 250 trees; Cubist (Quinlan, 1992); and XGboost (Chen and
Guestrin, 2016) with a learning rate set to 1, a depth set to 5, and B = 50 trees. For the propensity score model, we used
either regression tees with 40 observations in each terminal node and random forests with 20 observations per terminal
node and B = 250 trees; see Tables 1 and 2 for the different combinations of outcome regression models and propensity
score models.

5) In each sample, we computed 95%-based confidence intervals for µ of the form µ̂ ± 1.96
√
V̂tot(µ̂), where the pair

(µ̂, V̂tot(µ̂)) was either (µ̂aipw(m̂, p̂), V̂tot(µ̂aipw(m̂, p̂)) or (µ̂aipw,cf (m̂, p̂), V̂tot(µ̂aipw,cf (m̂, p̂)).

As a measure of bias of a generic point estimator µ̂, we computed its Monte Carlo percent relative bias defined as RB(µ̂) =
100×EMC(µ̂−µ)/µ, where EMC(.) denotes the Monte Carlo average across the R iterations. As a measure of relative efficiency
of µ̂, we computed RE(µ̂) = 100 × {MSEMC(µ̂)/MSEMC(µ̂F )}, where µ̂F denotes the full sample estimator (see Section 2).
As a measure of the bias of a generic variance estimator V̂ (µ̂), we computed its Monte Carlo percent relative bias defined as

RB(V̂ (µ̂)) = 100 ×
EMC(V̂ (µ̂)) −VMC(µ̂)

VMC(µ̂)
,

where VMC(.) denotes the Monte Carlo variance. Finally, we computed the Monte Carlo coverage rate of 95% normal-based
confidence intervals. The results are displayed in Tables 1 and 2. In both tables, note that, for a given sample size n and a given
point estimator, the first row represents the Monte Carlo RB, whereas the Monte Carlo RE is reported between parentheses on
the second row. Also, for a given sample size n and a given variance estimator, the first row represents the Monte Carlo RB,
whereas the Monte Carlo coverage rate is reported between parentheses on the second row.

We begin by discussing the performance of the point estimators µ̂aipw(m̂, p̂) and its cross-fitted version µ̂aipw,cf (m̂, p̂). Both
exhibited negligible bias in all but one scenario. Specifically, when RF was used to estimate m(xk) and p(xk), µ̂aipw and
µ̂aipw,cf showed slight bias in the case of Y2, with values of RB equal to -2.7% and 2.6%, respectively. In terms of RE, the
estimator µ̂aipw was generally slightly more efficient than its cross-fitted version µ̂aipw,cf although the differences tended to
vanish as the sample size increased. Turning to the performance of the variance estimators, we note that V̂tot(µ̂aipw(m̂, p̂))
exhibited negative bias in all scenarios. In several cases, the bias was significant with values of absolute RB exceeding 15%. In
these scenarios, the coverage rate of normal-based of confidence intervals fell short of the nominal rate. This poor performance
is most likely due to the problem of overfitting. On the other hand, the variance estimator V̂tot(µ̂aipw,cf (m̂, p̂)) performed well
across all scenarios, leading to coverage rates close to the nominal rate.

5. Final remarks
National statistical offices produce estimates not only at the overall population level but also for specific subpopulations, known
as domains. Our results naturally extend to the estimation of a vector of domain totals. When domains are identified at
the imputation stage, they should be incorporated into the imputation model. However, unplanned domains—those identified
post-imputation—pose additional challenges. Addressing this issue is an avenue for future research.

In this article, we have used a single ML method to model the survey variable Y and another ML method for the propensity
score model. An alternative approach would be to use aggregation methods, which combine multiple ML algorithms to enhance
predictive performance and robustness. One such method is the Super Learner algorithm, which builds an ensemble of candidate
models and optimally weights them using cross-validation (van der Laan et al., 2007)). This approach can be applied to both
the outcome and propensity score models, potentially improving efficiency and reducing bias. Under mild conditions, the
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SuperLearner achieves an asymptotic rate of convergence that is at least as fast as the best candidate learner in the library of
models. Investigating the properties of aggregation methods in the context of imputation for missing survey data remains an
area for future research.
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µ̂aipw V̂(µ̂aipw) µ̂aipw,cf V̂(µ̂aipw,cf )

[m(xk); p(xk)] = [Cubist; Trees]

n = 200 0.4
(162)

-4.0
(94.4)

0.4
(173)

4.0
(95.1)

n = 400 0.1
(156)

-4.0
(95.1)

0.1
(164)

4.1
(95.5)

n = 800 -0.0
(157)

-4.8
(94.7)

0.0
(163)

1.0
(95.5)

n = 1, 600 0.0
(158)

-3.7
(95.0)

0.0
(165)

-2.1
(95.8)

[m(xk); p(xk)] = [Cubist; RF]

n = 200 0.3
(161)

-14.0
(92.8)

0.4
(166)

-2.0
(94.4)

n = 400 0.1
(158)

-15.7
(92.8)

0.1
(159)

-5.0
(94.5)

n = 800 0.1
(159)

-16.5
(92.9)

0.1
(160)

-7.0
(94.5)

n = 1, 600 0.1
(148)

-12.1
(93.9)

0.1
(148)

-3.0
(94.9)

[m(xk); p(xk)] = [RF; RF]

n = 200 0.1
(156)

-17.8
(93.2)

0.0
(160)

2.5
(95.5)

n = 400 0.1
(158)

-20.2
(92.6)

0.1
(160)

-0.5
(95.3)

n = 800 0.1
(158)

-20.0
(92.2)

0.1
(158)

-0.0
(95.2)

n = 1, 600 0.1
(152)

-23.0
(91.8)

0.1
(152)

-6.4
(94.9)

[m(xk); p(xk)] = [XGboost; Trees]

n = 200 -0.4
(203)

-53.0
(82.6)

0.2
(217)

-0.4
(95.1)

n = 400 -0.2
(201)

-52.0
(82.4)

0.2
(228)

-2.1
(94.7)

n = 800 -0.1
(197)

-51.5
(83.0)

0.1
(221)

-0.4
(94.9)

n = 1, 600 -0.1
(195)

-50.4
(83.9)

0.0
(218)

0.4
(95.0)

Table 1: Monte Carlo statistics associated with point and variance estimator for the survey variable Y1
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µ̂aipw V̂(µ̂aipw) µ̂aipw,cf V̂(µ̂aipw,cf )

[m(xk); p(xk)] = [Cubist; Trees]

n = 200 0.1
(131)

-18.5
(92.1)

0.6
(144)

-0.9
(94.5)

n = 400 0.0
(120)

-16.0
(93.0)

0.4
(130)

-5.2
(94.0)

n = 800 -0.0
(110)

-10.3
(93.8)

0.4
(116)

-2.4
(95.0)

n = 1, 600 -0.1
(106)

-6.7
(94.0)

0.2
(110)

-3.6
(94.3)

[m(xk); p(xk)] = [Cubist; RF]

n = 200 0.1
(1139)

-25.9
(90.9)

0.4
(147)

-11.0
(93.7)

n = 400 0.0
(111)

-18.2
(92.1)

0.3
(120)

-9.8
(93.7)

n = 800 -0.1
(112)

-9.6
(93.6)

0.2
(112)

-4.2
(94.1)

n = 1, 600 -0.1
(106)

-4.8
(94.3)

0.1
(107)

–1.8
(94.6)

[m(xk); p(xk)] = [RF; RF]

n = 200 2.7
(151)

-14.0
(91.1)

2.6
(156)

1.7
(93.6)

n = 400 0.8
(130)

-14.2
(92.6)

0.5
(130)

-2.1
(94.7)

n = 800 -0.0
(121)

-9.0
(93.8)

-0.1
(123)

1.3
(95.4)

n = 1, 600 -0.1
(112)

-8.8
(93.8)

-0.1
(113)

-0.8
(94.6)

[m(xk); p(xk)] = [XGboost; Trees]

n = 200 -0.4
(121)

-20.2
(91.8)

0.2
(135)

-1.1
(94.7)

n = 400 -0.6
(116)

-14.6
(92.4)

0.2
(129)

-3.5
(94.2)

n = 800 -0.5
(117)

-12.6
(92.7)

0.1
(125)

-2.3
(94.4)

n = 1, 600 -0.1
(116)

-11.3
(93.7)

0.0
(120)

0.0
(95.0)

Table 2: Monte Carlo statistics associated with point and variance estimator for the survey variable Y2
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