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1 Asymptotic assumptions

Assumptions: population-based RF model-assisted estimator t̂∗rf

To establish the properties of the proposed estimators, we will consider three categories

of assumptions: assumptions on the sampling design, assumptions on the survey vari-

able and, �nally, assumptions on the random forests.

(H1) We assume that there exists a positive constant C such that supk∈Uv
|yk| 6

C <∞.

(H2) We assume that lim
v→∞

nv
Nv

= π ∈ (0; 1).

(H3) There exist positive constants λ and λ∗ such that min
k∈Uv

πk > λ > 0, min
k,`∈Uv

πk` >

λ∗ > 0 and lim sup
v→∞

nv max
k 6=`∈Uv

|πk` − πkπ`| <∞.

(C1) The number of subsampled elements N ′v is such that limv→∞N
′
v/Nv ∈ (0; 1].

Assumptions: sample-based RF model-assisted estimator t̂rf

(H4) We assume that there exists a positive constant C1 > 0 such that

nvmaxk 6=`∈Uv

∣∣∣Ep {(Ik − πk)(I` − π`)|P̂S}∣∣∣ ≤ C1
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(H5) The random forests based on population partitions and those based on sample

partitions are such that, for all x ∈ Rp :

Ep
( ̂̃mrf (x)− m̃rf (x)

)2
= o(1).

where ̂̃mrf (x) is given by

̂̃mrf (x) =
∑
`∈Uv

1

B

B∑
b=1

ψ
(b,S)
` 1

x`∈A(S)
(
x,θ

(S)
b

)
̂̃
N(x, θ

(S)
b )

y`

with
̂̃
N(x, θ

(S)
b ) =

∑
k∈Uv

ψ
(b,S)
k 1

xk∈A(S)
(
x,θ

(S)
b

) and

m̃rf (x) =
∑
`∈Uv

1

B

B∑
b=1

ψ
(b,U)
` 1

x`∈A(U)
(
x,θ

(U)
b

)
Ñ(x, θ

(U)
b )

y`

with Ñ(x, θ
(U)
b ) =

∑
k∈Uv

ψ
(b,U)
k 1

xk∈A(U)
(
x,θ

(U)
b

).
Below, we include a graph illustrating the convergence of the di�erence ̂̃mrf − m̃rf

towards 0 in L2 where the regression function was de�ned asm(X) = 2+2X1+X2+X3,

with X1, X2 and X3 de�ned as in Section 6 from the main paper. The population sizes

were such that the sampling fraction was of 10%. Similar results can be obtained using

other simulation parameters.

(C2) The number of subsampled elements n′v is such that limv→∞ n
′
v/nv ∈ (0; 1].

Consistency of the Horvitz-Thompson variance estimator

(H6) Assume that lim
v→∞

max
i,j,k,`∈D4,Nv

|Ep {(IiIj − πiπj) (IkI` − πkπ`)}| = 0, where D4,Nv

denotes the set of distinct 4-tuples from Uv.

2 Asymptotic Results

2.1 Asymptotic results of the population RF model-assisted

estimator t̂∗rf

The population RF model-assisted estimator is given by

t̂∗rf =
∑
k∈Uv

m̂∗rf (xk) +
∑
k∈Sv

yk − m̂∗rf (xk)
πk

,
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where m̂∗rf is the sample-based estimator of m by using RF built at the population

level (for more details, see relation (13) from the main paper):

m̂∗rf (xk) =
∑
`∈Sv

1

π`
W̃ ∗
` (xk)y`, (1)

where

W̃ ∗
` (xk) =

1

B

B∑
b=1

ψ
(b,U)
` 1

x`∈A∗(U)
(
xk,θ

(U)
b

)
Ñ∗(xk, θ

(U)
b )

and Ñ∗(xk, θ
(U)
b ) =

∑
`∈Uv

ψ
(b,U)
` 1

x`∈A∗(U)
(
xk,θ

(U)
b

) is the number of units falling in the

terminal node A∗(U)
(
xk, θ

(U)
b

)
containing xk. The estimator m̂∗rf (xk) can be written

as a bagged estimator as follows:

m̂∗rf (xk) =
1

B

B∑
b=1

m̂
∗(b)
tree(xk, θ

(U)
b ),

where m̂
∗(b)
tree(xk, θ

(U)
b ) is the sample-based estimation of m based on the b-th stochastic

tree:

m̂
∗(b)
tree(xk, θ

(U)
b ) =

∑
`∈Sv

1

π`

ψ
(b,U)
` 1

x`∈A∗(U)
(
xk,θ

(U)
b

)
Ñ∗(xk, θ

(U)
b )

y`. (2)

3



For more readability, we will use in the sequel m̂
∗(b)
tree(xk) instead of m̂

∗(b)
tree(xk, θ

(U)
b ).

Consider the pseudo-generalized di�erence estimator:

t̂pgd =
∑
k∈Uv

m̃∗rf (xk) +
∑
k∈Sv

yk − m̃∗rf (xk)
πk

,

where m̃∗rf (xk) is the population-based estimator of m by using RF built at the pop-

ulation level (for more details, see relation (12) from the main paper):

m̃∗rf (xk) =
∑
`∈Uv

W̃ ∗
` (xk)y`.

The estimator m̃∗rf can be written as a bagged estimator as follows:

m̃∗rf (xk) =
1

B

B∑
b=1

m̃
∗(b)
tree(xk)

and m̃
∗(b)
tree(xk) is the predictor associated with unit k and based on the b-th stochastic

tree:

m̃
∗(b)
tree(xk) =

∑
`∈Uv

ψ
(b,U)
` 1

x`∈A∗(U)
(
xk,θ

(U)
b

)
Ñ∗(xk, θ

(U)
b )

y`. (3)

We remark that m̂
∗(b)
tree(xk) is the Horvitz-Thompson estimator of m̃

∗(b)
tree(xk). As before,

m̃
∗(b)
tree depends on θ

(U)
b but, for more readability, we drop θ

(U)
b from the expression of

m̃
∗(b)
tree(xk).

We give in the next equivalent expressions of m̃
∗(b)
tree and m̂

∗(b)
tree. Consider for that

the B partitions built at the population level: P̃∗U = {P̃∗(b)U }Bb=1. For a given b =

1, . . . , B, the partition P̃∗(b)U build in the b-th stochastic tree is composed by the J∗bU

disjointed regions: P̃∗(b)U = {A∗(bU)
j }J

∗
bU
j=1. Consider z

∗(b)
k = (1

xk∈A
∗(bU)
1

, . . . ,1
xk∈A

∗(bU)

J∗
bU

)>

where 1
xk∈A

∗(bU)
j

= 1 if xk belongs to the region A
∗(bU)
j and zero otherwise for all j =

1, . . . , J∗bU . We drop the exponent U from the expression of z
∗(b)
k for more readability.

Since P̃∗(b)U is a partition, then xk belongs to only one region of the b-th tree, so the

vector z
∗(b)
k will contain only one non-null component. Consider for example that xk ∈

A
∗(bU)
j , then m̃

∗(b)
tree(xk) is the mean of y-values of individuals ` for which x` ∈ A∗(bU)

j :

m̃
∗(b)
tree(xk) =

∑
`∈Uv

ψ
(b,U)
` 1

x`∈A
∗(bU)
j

Ñ
∗(b)
j

y`, for xk ∈ A∗(bU)
j ,
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where Ñ
∗(b)
j is the number of units belonging to the region A

∗(bU)
j :

Ñ
∗(b)
j =

∑
`∈Uv

ψ
(b,U)
` 1

x`∈A
∗(bU)
j

, j = 1, . . . , J∗bU . (4)

Then, m̃
∗(b)
tree(xk) can be written as follows:

m̃
∗(b)
N,rf (xk) = (z

∗(b)
k )>β̃

∗(b)
, k ∈ Uv (5)

where

β̃
∗(b)

=

(∑
`∈Uv

ψ
(b,U)
` z

∗(b)
` (z

∗(b)
` )>

)−1 ∑
`∈Uv

ψ
(b,U)
` z

∗(b)
` y`.

Remark that β̃
∗(b)

may be obtained as solution of the following weighted estimating

equation: ∑
`∈Uv

ψ
(b,U)
` z

∗(b)
` (y` − (z

∗(b)
` )>β∗(b)) = 0.

Since the regions A
∗(bU)
j , j = 1, . . . , J∗bU , form a partition, then the matrix∑

`∈Uv
ψ

(b,U)
` z

∗(b)
` (z

∗(b)
` )> is diagonal with diagonal elements equal to Ñ

∗(b)
j , the number

of units falling in the region A
∗(bU)
j for all j = 1, . . . , J∗bU . By the stopping criterion, we

have that all Ñ
∗(b)
j ≥ N0v > 0 for all j, so the matrix

∑
`∈Uv

ψ
(b,U)
` z

∗(b)
` (z

∗(b)
` )> is always

invertible and β̃
∗(b)

is well-de�ned.

Consider now m̂
∗(b)
tree(xk), the estimator of the unknown m̃

∗(b)
tree(xk). Then, m̂

∗(b)
tree(xk)

is the weighted mean of y-values for sampled individuals ` belonging to the same region

A
∗(bU)
j as unit k :

m̂
∗(b)
tree(xk) =

∑
`∈Sv

1

π`

ψ
(b,U)
` 1

x`∈A
∗(bU)
j

N
∗(b)
j,N

y` for xk ∈ A∗(bU)
j

and we can write:

m̂
∗(b)
tree(xk) = (z

∗(b)
k )>β̂

∗(b)
, k ∈ Uv (6)

where

β̂
∗(b)

=

(∑
`∈Uv

ψ
(b,U)
` z

∗(b)
` (z

∗(b)
` )>

)−1∑
`∈Sv

1

π`
ψ

(b,U)
` z

∗(b)
` y`.

In the expression of β̂
∗(b)
, we do not estimate the matrix

∑
`∈Uv

ψ
(b,U)
` z

∗(b)
` (z

∗(b)
` )> since

it is known and besides, we guarantee in this way that we will always have non-empty
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terminal nodes at the population level. So, β̂
∗(b)

will be always well-de�ned whatever

the sample S is.

Let denote by αk = π−1k Ik − 1 for all k ∈ Uv, where Ik is the sample membership,

Ik = 1 if k ∈ S and zero otherwise. In order to prove the consistency of t̂∗rf as well as

its asymptotic equivalence to the pseudo-generalized di�erence estimator t̂pgd, we use

the following decomposition:

1

Nv

(
t̂∗rf − ty

)
=

1

Nv

(
t̂pgd − ty

)
− 1

Nv

∑
k∈Uv

αk(m̂
∗
rf (xk)− m̃∗rf (xk))

=
1

Nv

(
t̂pgd − ty

)
− 1

B

B∑
b=1

[
1

Nv

∑
k∈Uv

αk

(
m̂
∗(b)
tree(xk)− m̃

∗(b)
tree(xk)

)]
. (7)

We will prove that each term form the decomposition (7) is convergent to zero. We

give �rst several useful lemmas.

Lemma 1. There exists a positive constant c̃1 such that:

nv
N2
v

Ep(t̂pgd − ty)2 6 c̃1.

Proof. First of all, from relation (1), m̃∗rf (xk) is a weighted sum at the population level

of y-values with positive weights summing to one (see proposition 2.1. from the main

paper). Then, we get that supk∈Uv
|m̃∗rf (xk)| 6 C by using also assumption (H1). We

have:
1

Nv

(t̂pgd − ty) =
1

Nv

∑
k∈Uv

αk(yk − m̃∗rf (xk))

and

nvEp

(
t̂pgd − ty
Nv

)2

=
nv
N2
v

Vp

(∑
k∈Sv

(yk − m̃∗rf (xk))
πk

)

6

(
nv
Nv

· 1
λ
+
nvmaxk 6=`∈Uv |πk` − πkπ`|

λ2

)
· 2

Nv

∑
k∈Uv

(
y2k + (m̃∗rf (xk))

2
)

6 c̃1

by assumptions (H1)-(H3). �

Lemma 2. There exists a positive constant c̃2 not depending on b = 1, . . . , B, such

that

Ep||β̂
∗(b)
− β̃

∗(b)
||22 6

c̃2Nv

N2
0v

for all b = 1, . . . , B.
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Proof. We can write

β̂
∗(b)
− β̃

∗(b)
=

(∑
`∈Uv

ψ
(b,U)
` z

∗(b)
` (z

∗(b)
` )>

)−1(∑
`∈Sv

1

π`
ψ

(b,U)
` z

∗(b)
` y` −

∑
`∈Uv

ψ
(b,U)
` z

∗(b)
` y`

)

=

(∑
`∈Uv

ψ
(b,U)
` z

∗(b)
` (z

∗(b)
` )>

)−1(∑
`∈Uv

α`ψ
(b,U)
` z

∗(b)
` y`

)
(8)

Let denote by T̃∗(b) =
∑

`∈Uv
ψ

(b,U)
` z

∗(b)
` (z

∗(b)
` )>. As already mentioned before, the ma-

trix T̃∗(b) is diagonal with positive diagonal elements given by Ñ
∗(b)
j the number of

units falling in the region A
∗(bU)
j (see relation 4) for j = 1, . . . , J∗bU and by the stopping

criterion, we have that Ñ
∗(b)
j ≥ N0v > 0. We obtain then

||(T̃∗(b))−1||2 = max
j=1,...,JbU

(
1

Ñ
∗(b)
j

)
≤ N−10v , for all b = 1, . . . , B (9)

where || · ||2 is the spectral norm matrix de�ned for a squared p × p matrix A by

||A||2 = supx∈Rp,||x||2 6=0 ||Ax||2/||x||2. For a symmetric and positive de�nite matrix A,

we have that ||A||2 = λmax(A) where λmax(A) is the largest eigenvalue of A. We get,

for b = 1, . . . , B :

Ep||β̂
∗(b)
− β̃

∗(b)
||22 6 Ep

[
||Nv(T̃

∗(b))−1||22 ·
∣∣∣∣∣∣∣∣ 1Nv

∑
`∈Uv

α`ψ
(b,U)
` z

∗(b)
` y`

∣∣∣∣∣∣∣∣2
2

]

6
N2
v

N2
0v

Ep
∣∣∣∣∣∣∣∣ 1Nv

∑
`∈Uv

α`ψ
(b,U)
` z

∗(b)
` y`

∣∣∣∣∣∣∣∣2
2

(10)

and

Ep
∣∣∣∣∣∣∣∣ 1Nv

∑
k∈Uv

αkψ
(b,U)
k z

∗(b)
k yk

∣∣∣∣∣∣∣∣2
2

=
1

N2
v

(∑
k∈Uv

(ψ
(b,U)
k )2y2k||z

∗(b)
k ||

2
2Ep(α2

k) +
∑
k∈Uv

∑
`∈Uv
`6=k

ψ
(b,U)
k ψ

(b,U)
` yky`(z

∗(b)
k )>z

∗(b)
` Ep(αkα`)

)

6
1

nv

(
nv
λNv

+
nvmaxk,`∈Uv ,k 6=`|πk` − πkπ`|

λ2

)(
1

Nv

∑
k∈Uv

(ψ
(b,U)
k )2y2k||z

∗(b)
k ||

2
2

)
6

C0

nv
(11)

by assumptions (H1)-(H3) and the fact that ||z∗(b)k ||22 = 1 for all k ∈ Uv and b =

1, . . . , B. From (10), (11) and assumption (H1), we obtain that it exists a positive

constant c̃2 such that

Ep||β̂
∗(b)
− β̃

∗(b)
||22 6

c̃2Nv

N2
0v

.

�
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Result 2.1. Consider a sequence of population RF estimators {t̂∗rf}. Then, there exist

positive constants C̃1, C̃2 such that

Ep
∣∣∣∣ 1Nv

(
t̂∗rf − ty

) ∣∣∣∣ 6 C̃1√
nv

+
C̃2

N0v

, with ξ-probability one.

If
Na
v

N0v

= O(1) with 1/2 6 a 6 1, then

Ep
∣∣∣∣ 1Nv

(
t̂∗rf − ty

) ∣∣∣∣ 6 C̃
√
nv
, with ξ-probability one.

Proof. We get from relation (7) :

1

Nv

Ep
∣∣∣∣t̂∗rf − ty∣∣∣∣ 6 1

Nv

Ep
∣∣∣∣t̂pgd − ty∣∣∣∣+ 1

B

B∑
b=1

1

Nv

Ep
∣∣∣∣ ∑
k∈Uv

αk(m̂
∗(b)
tree(xk)− m̃

∗(b)
tree(xk))

∣∣∣∣.
Lemma 1 gives us that there exists positive constant C̃1 such that

1

Nv

Ep
∣∣∣∣t̂pgd − ty∣∣∣∣ 6 C̃1√

nv
. (12)

Now, by using relations (5) and (6), we can then write for any b = 1, . . . , B:∑
k∈Uv

αk(m̂
∗(b)
tree(xk)− m̃

∗(b)
tree(xk)) =

∑
k∈Uv

αk(z
∗(b)
k )>(β̂

∗(b)
− β̃

∗(b)
)

and

1

Nv

Ep
∣∣∣∣ ∑
k∈Uv

αk(m̂
∗(b)
tree(xk)− m̃

∗(b)
tree(xk))

∣∣∣∣ 6 (Ep∣∣∣∣∣∣∣∣ 1Nv

∑
k∈Uv

αkz
∗(b)
k

∣∣∣∣∣∣∣∣2
2

)1/2(
Ep||β̂

∗(b)
− β̃

∗(b)
||22
)1/2

(13)

and

Ep
∣∣∣∣∣∣∣∣ 1Nv

∑
k∈Uv

αkz
∗(b)
k

∣∣∣∣∣∣∣∣2
2

=
1

N2
v

(∑
k∈Uv

Ep(α2
k)||z

∗(b)
k ||

2
2 +

∑
k∈Uv

∑
`∈Uv
`6=k

Ep(αkα`)(z∗(b)k )>z
∗(b)
`

)

6
1

nv

(
nv
λNv

+
nvmaxk 6=`∈Uv |πk` − πkπ`|

λ2

)
· 1

Nv

∑
k∈Uv

||z∗(b)k ||
2
2

6
C2

nv
(14)

by assumptions (H1)-(H3) and the fact that ||z∗(b)k ||22 = 1 for all k ∈ Uv and b =

1, . . . , B. Then, from relations (13), (14) and lemma 2, we get that there exists a

positive constant C̃2 such that, for any b = 1, . . . , B, we have:

1

Nv

Ep
∣∣∣∣ ∑
k∈Uv

αk(m̂
∗(b)
rf (xk)− m̃∗(b)N,rf (xk))

∣∣∣∣ 6
√
C2

nv

c̃2Nv

N2
0v

6
C̃2

N0v

(15)
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by using also the assumption (H1). The result follows then from relations (12) and

(15). �

Result 2.2. Consider a sequence of RF estimators {t̂∗rf}. If
Na
v

N0v

= O(1) with 1/2 <

a 6 1, then √
nv
Nv

(
t̂∗rf − ty

)
=

√
nv
Nv

(
t̂pgd − ty

)
+ oP(1).

Proof. We get from relation (7) and lemmas (1) and the proof of result 2.1 (relation

15) that

√
nv
Nv

(
t̂∗rf − ty

)
=

√
nv
Nv

(
t̂pgd − ty

)
+

1

B

B∑
b=1

[√
nv
Nv

∑
k∈Uv

αk(m̂
∗(b)
tree(xk)− m̃

∗(b)
tree(xk))

]
.

=

√
nv
Nv

(
t̂pgd − ty

)
+OP

(√
nv

N0v

)
=

√
nv
Nv

(
t̂pgd − ty

)
+ oP(1)

provided that
Na
v

N0v

= O(1) with 1/2 < a 6 1. �

Result 2.3. Consider a sequence of population RF estimators {t̂∗rf}. Assume that
Na
v

N0v

= O(1) with 1/2 < a 6 1, then the variance estimator V̂rf (t̂
∗
rf ) is design-consistent

for the asymptotic variance AVp

(
t̂∗rf
)
. That is,

lim
v→∞

Ep
(
nv
N2
v

∣∣∣∣V̂rf (t̂
∗
rf )− AVp(t̂

∗
rf )

∣∣∣∣) = 0.

Proof Consider the following decomposition

nv

(
V̂p

(
N−1v t̂∗rf

)
− AVp

(
N−1v t̂∗rf

))
= nv

(
V̂p

(
N−1v t̂∗rf

)
− V̂p

(
N−1v t̂pgd

))
+ nv

(
V̂p

(
N−1v t̂pgd

)
− AVp

(
N−1v t̂∗rf

))
where V̂p

(
N−1v t̂pgd

)
is the pseudo-type variance estimator of Vp

(
N−1v t̂pgd

)
=

AVp

(
N−1v t̂∗rf

)
given by

V̂p

(
N−1v t̂pgd

)
=

1

N2
v

∑
k∈Uv

∑
`∈Uv

πk` − πkπ`
πk`

yk − m̃∗rf (xk)
πk

y` − m̃∗rf (x`)
π`

IkI`.

Now, to prove that the consistency of the �rst term from right of (16), we use the

same decomposition as in Goga and Ruiz-Gazen (2014). Denote ẽk = yk − m̃∗rf (xk),

êk = yk − m̂∗rf (xk) and ck` =
πk` − πkπ`
πk`πkπ`

IkI`. Then,

nv(V̂p

(
N−1v t̂∗rf

)
− V̂p

(
N−1v t̂pgd

)
) =

nv
N2
v

∑
k∈Uv

∑
`∈Uv

ck` (êkê` − ẽkẽ`)

9



=
nv
N2
v

∑
k∈Uv

∑
`∈Uv

ck` [(êk − ẽk)(ê` − ẽ`) + ẽk(ê` − ẽ`) + ẽ`(êk − ẽk)]

= A1 + A2 + A3.

For all k ∈ Uv, êk − ẽk = m̃∗rf (xk)− m̂∗rf (xk) and thus,

Ep|A1| ≤
(

nv
λ2Nv

+
nvmaxk 6=`∈Uv |πk` − πkπ`|

λ∗λ2

)
1

Nv

∑
k∈Uv

Ep(êk − ẽk)2,

by assumptions (H2)-(H3). Therefore, it su�ces to show that, for all k ∈ Uv, one has

Ep(êk − ẽk)2 = o(1) uniformly in k, which we show next. We have

Ep(m̃∗rf (xk)− m̂∗rf (xk))2 6
1

B

B∑
b=1

Ep(m̃∗(b)tree(xk)− m̂
∗(b)
tree(xk))

2.

We can write by using relations (5) and (6):

m̂
∗(b)
tree(xk)− m̃

∗(b)
tree(xk) = (z

∗(b)
k )>(β̂

∗(b)
− β̃

∗(b)
)

and then, by using lemma (2),

Ep(m̃∗rf (xk)− m̂∗rf (xk))2 6
1

B

B∑
b=1

Ep
(
||z∗(b)k ||

2
2||β̂

∗(b)
− β̃

∗(b)
||22
)

6
c̃2Nv

N2
0v

quantity going to zero provided that
Na
v

N0v

= O(1) with 1/2 < a 6 1.

Using the same arguments, we obtain that Ep|A2| = o(1) and Ep|A3| = o(1). We

get then

nvEp|V̂p

(
N−1v t̂∗rf

)
− V̂p

(
N−1v t̂pgd

)
| = o(1).

The second term from right of (16) concerns the consistency of the estimator of the

Horvitz-Thompson variance computed for the population residuals yk − m̃∗rf (xk), k ∈

Uv. The proof of this consistency (Breidt and Opsomer, 2000) requires assumptions

only on the higher order inclusion probabilities (H6) as well as �nite forth moment of

yk − m̃∗rf (xk) :

1

Nv

∑
k∈Uv

(yk − m̃∗rf (xk))4 ≤
4

Nv

∑
k∈Uv

(y4k + (m̃∗rf (xk))
4) <∞.

So,

nvEp|V̂p

(
N−1v t̂pgd

)
− AVp

(
N−1v t̂∗rf

)
| = o(1)

and the result follows.
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2.2 Asymptotic results: the sample RF model-assisted estima-

tor t̂rf

The sample RF model-assisted estimator is given by

t̂rf =
∑
k∈Uv

m̂rf (xk) +
∑
k∈Sv

yk − m̂rf (xk)

πk
,

where m̂rf is the estimator of m built at the sample level and by using RF based on

partition built at the sample level (for more details, see relation (17) from the main

paper):

m̂rf (xk) =
∑
`∈Sv

1

π`
Ŵ`(xk)y`,

where

Ŵ`(xk) =
1

B

B∑
b=1

ψ
(b,S)
` 1

x`∈A(S)
(
xk,θ

(S)
b

)
N̂(xk, θ

(S)
b )

and N̂(xk, θ
(S)
b ) =

∑
`∈Sv

π−1` ψ
(b,S)
` 1

x`∈A(S)
(
xk,θ

(S)
b

) is the estimated number of units

falling in the terminal node A(S)
(
xk, θ

(S)
b

)
containing xk. As in Section 2.1, the esti-

mator m̂rf (xk) can be written as a bagged estimator of m as follows:

m̂rf (xk) =
1

B

B∑
b=1

m̂
(b)
tree(xk)

and m̂
(b)
tree(xk) is the estimation of m based on the b-th stochastic tree:

m̂
(b)
tree(xk) =

∑
`∈Sv

1

π`

ψ
(b,S)
` 1

x`∈A(S)
(
xk,θ

(S)
b

)
N̂(xk, θ

(S)
b )

y` (16)

As in Section 2.1, for more readability, we note in the sequel m̂
(b)
tree(xk) instead of

m̂
(b)
tree(xk, θ

(S)
b ). Consider the pseudo-generalized di�erence estimator:

t̂pgd =
∑
k∈Uv

m̃rf (xk) +
∑
k∈Sv

yk − m̃rf (xk)

πk

where m̃rf is the estimation of m built at the population level by using RF based on

partition built also at the population level (relation (9) from the main paper):

m̃rf (xk) =
∑
`∈Uv

W̃`(xk)y`,

where

W̃`(xk) =
1

B

B∑
b=1

ψ
(b,U)
` 1

x`∈A(U)
(
xk,θ

(U)
b

)
Ñ(xk, θ

(U)
b )

11



with Ñ(xk, θ
(U)
b ) =

∑
`∈Uv

ψ
(b,U)
` 1

x`∈A(U)
(
xk,θ

(U)
b

) is the number of units falling in the

terminal node A(U)
(
xk, θ

(U)
b

)
containing xk. The estimator m̂rf can be also written

as a bagged estimator as follows:

m̃rf (xk) =
1

B

B∑
b=1

m̃
(b)
tree(xk)

and

m̃
(b)
tree(xk) =

∑
`∈Uv

ψ
(b,U)
` 1

x`∈A(U)
(
xk,θ

(U)
b

)
Ñ(xk, θ

(U)
b )

y`.

As in the previous section, we will write m̃rf and m̂rf in equivalent forms. Consider

for that the B partitions build at the population level P̃U = {P̃(b)
U }Bb=1. For a given

b = 1, . . . , B, the partition P̃(b)
U is composed by the disjointed regions P̃(b)

U = {A(bU)
j }JbUj=1.

Consider z
(b)
k = (1

xk∈A
(bU)
1

, . . . ,1
xk∈A

(bU)
JbU

)> where 1
xk∈A

(bU)
j

= 1 if xk belongs to the

region A
(bU)
j and zero otherwise for all j = 1, . . . , JbU . Since P̃(b)

U is a partition, then

xk belongs to only one region at the b-th step. Suppose for example that xk ∈ A(bU)
j ,

then m̃
(b)
tree(xk) is the mean of y-values for individuals ` for which x` ∈ A(bU)

j :

m̃
(b)
tree(xk) =

∑
`∈Uv

ψ
(b,U)
` 1

x`∈A
(bU)
j

Ñ
(b)
j

y`, for xk ∈ A(bU)
j ,

where Ñ
(b)
j is the number of units belonging to the region A

(bU)
j :

Ñ
(b)
j =

∑
`∈Uv

ψ
(b,U)
` 1

x`∈A
(bU)
j

, j = 1, . . . , JbU . (17)

Then, m̃
(b)
tree(xk) can be written as a regression-type estimator with z

(b)
k as explanatory

variables:

m̃
(b)
tree(xk) = (z

(b)
k )>β̃

(b)
, k ∈ Uv (18)

where

β̃
(b)

=

(∑
`∈Uv

ψ
(b,U)
` z

(b)
` (z

(b)
` )>

)−1 ∑
`∈Uv

ψ
(b,U)
` z

(b)
` y`.

Based on the same arguments as in Section 2.1, the matrix
∑

`∈Uv
ψ

(b,U)
` z

(b)
` (z

(b)
` )>

is diagonal with diagonal elements equal to Ñ
(b)
j , j = 1, . . . , JbU . By the stopping

criterion, we have that all Ñ
(b)
j ≥ N0 > 0, so the matrix

∑
`∈Uv

ψ
(b,U)
` z

(b)
` (z

(b)
` )> is

invertible and β̃
(b)

is well-de�ned.

12



Consider now the B partitions build at the sample level P̂S = {P̂(b)
S }Bb=1. For a given

b = 1, . . . , B, the partition P̂(b)
S is composed by the disjointed regions P̂(b)

S = {A(bS)
j }

JbS
j=1.

Consider ẑ
(b)
k = (1

xk∈A
(b)
1S
, . . . ,1{xk∈A

(b)
JbS
})
> where 1

xk∈A
(bS)
j

= 1 if xk belongs to the

region A
(bS)
j and zero otherwise for all j = 1, . . . , JbS. Here, the hat notation is to

design the fact that the vector ẑ
(b)
k depends on random dummy variables 1

xk∈A
(bS)
j
.

Since {A(bS)
j }

JbS
j=1 form a partition, then xk belongs to only one terminal node. Suppose

for example that xk ∈ A(bS)
j , then m̂

(b)
tree(xk) is a Hajek-type estimator:

m̂
(b)
tree(xk) =

∑
`∈Sv

1

π`

ψ
(b,S)
` 1

x`∈A
(bS)
j
y`

N̂
(b)
j

, for xk ∈ A(bS)
j ,

where N̂
(b)
j is the estimated number of units falling in the terminal node A

(bS)
j :

N̂
(b)
j =

∑
`∈Sv

1

π`
ψ

(b,S)
` 1

x`∈A
(bS)
j
, j = 1, . . . , JbS.

Then, m̂
(b)
tree(xk) can be written also as a regression-type estimator with ẑ

(b)
k as ex-

planatory variables:

m̂
(b)
tree(xk) = (ẑ

(b)
k )>β̂

(b)
, k ∈ Uv, (19)

where

β̂
(b)

=

(∑
`∈Sv

1

π`
ψ

(b,S)
` ẑ

(b)
` (ẑ

(b)
` )>

)−1∑
`∈Sv

1

π`
ψ

(b,S)
` ẑ

(b)
` y`.

As in Section 2.1, remark that β̂
(b)

may be obtained as solution of the following

weighted estimating equation:∑
`∈Sv

1

π`
ψ

(b,S)
` ẑ

(b)
` (y` − (ẑ

(b)
` )>β(b)) = 0.

Since {A(bS)
j }

JbS
j=1 is a partition, then the matrix

∑
`∈Sv

1
π`
ψ

(b,S)
` ẑ

(b)
` (ẑ

(b)
` )> is diago-

nal with diagonal elements equal to N̂
(b)
j , j = 1, . . . , JbS. By the stopping crite-

rion and assumption (H3), we have that
∑

`∈Sv

1
π`
ψ

(b,S)
` 1

x`∈A
(b)
jS
≥ n0v > 0, so∑

`∈Sv

1
π`
ψ

(b,S)
` ẑ

(b)
` (ẑ

(b)
` )> is always invertible is and β̂

(b)
is well-de�ned whatever the

sample S is.

We need to consider also a second pseudo-generalized di�erence estimator:

̂̃tpgd = ∑
k∈Uv

̂̃mrf (xk) +
∑
k∈Sv

yk − ̂̃mrf (xk)

πk

13



where

̂̃mrf (xk) =
∑
`∈Uv

 1

B

B∑
b=1

ψ
(b,S)
` 1

x`∈A(S)(xk,θ
(S)
b )̂̃

N(xk, θ
(S)
b )

 y`

=
1

B

B∑
b=1

̂̃m(b)

tree(xk)

with
̂̃
N(xk, θ

(S)
b ) =

∑
`∈Uv

ψ
(b,S)
` 1

x`∈A(xk,θ
(S)
b )

and

̂̃m(b)

tree(xk) =
∑
`∈Uv

ψ
(b,S)
` 1

x`∈A(S)(xk,θ
(S)
b )
y`̂̃

N(xk, θ
(S)
b )

= (ẑ
(b)
k )>

̂̃
β

(b)

, k ∈ Uv (20)

for

̂̃
β

(b)

=

(∑
`∈Uv

ψ
(b,S)
` ẑ

(b)
` (ẑ

(b)
` )>

)−1 ∑
`∈Uv

ψ
(b,S)
` ẑ

(b)
` y`.

The matrix
∑

`∈Uv
ψ

(b,S)
` ẑ

(b)
` (ẑ

(b)
` )> is also diagonal with diagonal elements equal to∑

`∈Uv
ψ

(b,S)
` 1

x`∈A
(bS)
j
≥ n0v > 0, j = 1, . . . , JbS so

̂̃
β

(b)

is also well-de�ned whatever the

sample S is. In order to prove the consistency of the sample-based RF estimator t̂rf ,

we use the following decomposition:

1

Nv

(t̂rf − ty) =
1

Nv

(̂t̃pgd − ty)−
1

Nv

∑
k∈Uv

αk(m̂rf (xk)− ̂̃mrf (xk)). (21)

We will give �rst several useful lemmas. The constants used in the following results

may not be the same as the ones from Section 2.1 even if they are denoted in the same

way for simplicity.

Lemma 3. There exists a positive constant c̃1 such that:

nv
N2
v

Ep(t̂pgd − ty)2 6 c̃1.

Proof. The proof is similar to that of lemma 1. We also have that supk∈Uv
|m̃rf (xk)| 6

C by using assumption (H1). Further,

nvEp

(
t̂pgd − ty
Nv

)2

6

(
nv
Nv

· 1
λ
+
nvmaxk 6=`∈Uv |πk` − πkπ`|

λ2

)
· 2

Nv

∑
k∈Uv

(
y2k + (m̃rf (xk))

2
)

6 c̃1

by assumptions (H1)-(H3). �
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Lemma 4. There exists a positive constant c̃2 such that:

nv
N2
v

Ep(̂t̃pgd − ty)2 6 c̃2.

Proof. Using (20), we get that ̂̃mrf (xk) can be written as a weighted sum of y-values

with positive weights summing to unity, so supk∈Uv
| ̂̃mrf (xk)| 6 C by using also as-

sumption (H1). Now,

̂̃tpgd − ty = ∑
k∈Uv

αk(yk − ̂̃mrf (xk))

and

nv
N2
v

Ep(̂t̃pgd − ty) =
nv
N2
v

∑
k∈Uv

Ep
[
α2
k(yk − ̂̃mrf (xk))

2
]

+
nv
N2
v

∑
k∈Uv

∑
6̀=k,`∈Uv

Ep
[
(yk − ̂̃mrf (xk))(y` − ̂̃mrf (x`))Ep(αkα`|P̂S)

]
6

2nvC
2

λNv

+
nv
N2
v

∑
k∈Uv

∑
` 6=k,`∈Uv

Ep
[
|yk − ̂̃mrf (xk)||y` − ̂̃mrf (x`)| max

`6=k∈Uv

|Ep(αkα`|P̂S)|
]

6 c̃2,

by assumptions (H2) and (H4). �

Lemma 5. There exists a positive constant c̃3 not depending on b such that:

Ep
∣∣∣∣∣∣∣∣β̂(b)

− ̂̃β(b)
∣∣∣∣∣∣∣∣2
2

6
c̃3nv
n2
0v

,

for all b = 1, . . . , B.

Proof. Let denote by T̂(b) =
∑

`∈Sv

1
π`
ψ

(b,S)
` ẑ

(b)
` (ẑ

(b)
` )>. As already mentioned, the

JbS × JbS dimensional matrix T̂(b) is diagonal with diagonal elements given by

N̂
(b)
j =

∑
`∈Sv

1
π`
ψ

(b,S)
` 1

x`∈A
(b)
jS

the weighted somme of units falling in the region A
(b)
jS for

j = 1, . . . , JbS and by the stopping criterion, we have that N̂
(b)
j ≥ n0v > 0. The matrix

T̂(b) is then always invertible with

||(T̂(b))−1||2 ≤ n−10v for all b = 1, . . . B. (22)

Now, write

β̂
(b)
− ̂̃β(b)

= (T̂(b))−1

(∑
`∈Sv

1

π`
ψ

(b,S)
` ẑ

(b)
` y` − T̂(b) ̂̃β(b)

)

15



= (T̂(b))−1
∑
`∈Sv

1

π`
ψ

(b,S)
` ẑ

(b)
`

(
y` − ̂̃m(b)

tree(x`)

)
= (T̂(b))−1

∑
`∈Uv

α`Ê
(b)
` (23)

where Ê
(b)
` = ψ

(b,S)
` ẑ

(b)
` (y` − ̂̃m(b)

tree(x`)) with
∑

`∈Uv
Ê

(b)
` = 0. We have that ||ẑ(b)` ||2 = 1

and sup`∈Uv
| ̂̃m(b)

tree(x`))| ≤ C for all ` ∈ Uv and b = 1, . . . , B, then:

||Ê(b)
` ||

2
2 6 2C2.

Following the same lines as in lemma 4, we get that it exists a positive constant C̃0

not depending on b such that

1

N2
v

Ep

∣∣∣∣∣
∣∣∣∣∣∑
`∈Uv

α`Ê
(b)
`

∣∣∣∣∣
∣∣∣∣∣
2

2

6
C̃0

nv
, for all b = 1, . . . B. (24)

We obtain then from relations (22) and (23) that:

Ep
∣∣∣∣∣∣∣∣β̂(b)

− ̂̃β(b)
∣∣∣∣∣∣∣∣2

2

6 Ep

N2
v ||(T̂(b))−1||22

1

N2
v

∣∣∣∣∣
∣∣∣∣∣∑
`∈Uv

α`Ê
(b)
`

∣∣∣∣∣
∣∣∣∣∣
2

2


6

N2
v

n2
0v

1

N2
v

Ep

∣∣∣∣∣
∣∣∣∣∣∑
`∈Uv

α`Ê
(b)
`

∣∣∣∣∣
∣∣∣∣∣
2

2

6
N2
v

n2
0v

C̃0

nv

6
c̃3nv
n2
0v

(25)

by assumption (H2). �

Result 2.4. Consider a sequence of sample RF estimators {t̂rf}. Then, there exist

positive constants C̃1, C̃2 such that

1

Nv

Ep|t̂rf − ty| 6
C̃1√
nv

+
C̃2

n0v

.

If
nuv
n0v

= O(1) with 1/2 6 u 6 1, then

Ep
∣∣∣∣ 1Nv

(
t̂rf − ty

) ∣∣∣∣ 6 C̃
√
nv
, with ξ-probability one.

Proof. We use the decomposition given in relation (21):

1

Nv

(t̂rf − ty) =
1

Nv

(̂t̃pgd − ty)−
1

Nv

∑
k∈Uv

αk(m̂rf (xk)− ̂̃mrf (xk)).
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Now,

Ep

∣∣∣∣∣ 1Nv

∑
k∈Uv

αk(m̂rf (xk)− ̂̃mrf (xk))

∣∣∣∣∣ 6 1

B

B∑
b=1

1

Nv

Ep

∣∣∣∣∣∑
k∈Uv

αk(m̂
(b)
tree(xk)− ̂̃m(b)

tree(xk))

∣∣∣∣∣
and using relations (19) and (20), we get:

1

Nv

Ep

∣∣∣∣∣∑
k∈Uv

αk(m̂
(b)
tree(xk)− ̂̃m(b)

tree(xk))

∣∣∣∣∣ 6 Ep

(∣∣∣∣∣
∣∣∣∣∣ 1Nv

∑
k∈Uv

αkẑ
(b)
k

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣∣∣∣β̂(b)
− ̂̃β(b)

∣∣∣∣∣∣∣∣
2

)

6

√√√√Ep

∣∣∣∣∣
∣∣∣∣∣ 1Nv

∑
k∈Uv

αkẑ
(b)
k

∣∣∣∣∣
∣∣∣∣∣
2

2

Ep
∣∣∣∣∣∣∣∣β̂(b)

− ̂̃β(b)
∣∣∣∣∣∣∣∣2
2

.

We have that ||ẑ(b)k ||2 = 1 for all k ∈ Uv and b = 1, . . . , B. We can show then by using

the same arguments as in the proof of lemma 4, that there exists a positive constant

C̃ ′0 such that

Ep

∣∣∣∣∣
∣∣∣∣∣ 1Nv

∑
k∈Uv

αkẑ
(b)
k

∣∣∣∣∣
∣∣∣∣∣
2

2

6
C̃ ′0
nv

which together with lemma 5 gives us that there exists a positive constant C̃2 such

that

1

Nv

Ep

∣∣∣∣∣∑
k∈Uv

αk(m̂rf (xk)− ̂̃mrf (xk))

∣∣∣∣∣ 6 C̃2

n0v

. (26)

Now,

1

Nv

Ep
∣∣∣∣t̂rf − ty∣∣∣∣ 6 1

Nv

Ep
∣∣∣∣̂t̃pgd − ty∣∣∣∣+ 1

B

B∑
b=1

1

Nv

Ep

∣∣∣∣∣∑
k∈Uv

αk(m̂
(b)
tree(xk)− ̂̃m(b)

tree(xk))

∣∣∣∣∣
6

C̃1√
nv

+
C̃2

n0v

by using lemma 4 and relation (26). �

Result 2.5. Consider a sequence of RF estimators {t̂rf}. Assume that
nuv
n0v

= O(1)

with 1/2 < u 6 1. Then,

√
nv
Nv

(
t̂rf − ty

)
=

√
nv
Nv

(
t̂pgd − ty

)
+ oP(1).

Proof. We have

√
nv
Nv

(
t̂rf − ty

)
=

√
nv
Nv

(
t̂pgd − ty

)
+

√
nv
Nv

∑
k∈Uv

αk(m̂rf (xk)− m̃N,rf (xk)). (27)
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Now,

√
nv
Nv

∑
k∈Uv

αk(m̂rf (xk)− m̃rf (xk))

=

√
nv
Nv

∑
k∈Uv

αk(m̂rf (xk)− ̂̃mrf (xk)) +

√
nv
Nv

∑
k∈Uv

αk( ̂̃mrf (xk)− m̃rf (xk)). (28)

Relation (26) gives us that

√
nv
Nv

∑
k∈Uv

αk(m̂rf (xk)− ̂̃mrf (xk)) = OP

(√
nv
n0v

)
= oP(1) (29)

provided that
nuv
n0v

= O(1) with 1/2 < u 6 1. Consider now the second term from the

right-side of relation (28). We have:

nv
N2
v

Ep

(∑
k∈Uv

αk( ̂̃mrf (xk)− m̃rf (xk))

)2

6
nv
N2
v

(1 + λ)2

λ2

∑
k∈Uv

Ep
( ̂̃mrf (xk)− m̃rf (xk)

)2
+

nv
N2
v

∑
k∈Uv

∑
6̀=k,`∈Uv

Ep
[
| ̂̃mrf (xk)− m̃rf (xk)|| ̂̃mrf (x`)− m̃rf (x`)| max

`6=k∈Uv

|Ep(αkα`|P̂S)|
]

6

(
nv
Nv

(1 + λ)2

λ2
+
C1

λ2

)
1

Nv

∑
k∈Uv

Ep
( ̂̃mrf (xk)− m̃rf (xk)

)2
= o(1),

by assumptions (H2), (H3), (H4) and (H5). It follows then that

√
nv
Nv

∑
k∈Uv

αk( ̂̃mrf (xk)− m̃rf (xk)) = oP(1). (30)

Relations (27), (28), (29) and (30) give then the result. �

Result 2.6. Consider a sequence of population RF estimators {t̂rf}. Assume also that
nuv
n0v

= O(1) with 1/2 < u 6 1. Then, the variance estimator V̂rf (t̂rf ) is asymptotically

design-consistent for the asymptotic variance AVp

(
t̂rf
)
. That is,

lim
v→∞

Ep
(
nv
N2
v

∣∣∣∣V̂rf (t̂rf )− AVp(t̂rf )

∣∣∣∣) = 0. (31)

Proof. The proof follows the same steps as those of result (2.3). We need to show that

Ep
[(
m̂rf (xk)− m̃rf (xk)

)2]
= o(1), (32)
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uniformly in k ∈ Uv. We have m̂rf (xk) − m̃rf (xk) = m̂rf (xk) − ̂̃mrf (xk) + ̂̃mrf (xk) −

m̃rf (xk) and

Ep(m̂rf (xk)− ̂̃mrf (xk))
2 6

1

B

B∑
b=1

Ep(m̂(b)
tree(xk)− ̂̃m(b)

tree(xk))
2

6
1

B

B∑
b=1

Ep

(
||ẑ(b)k ||

2
2

∣∣∣∣∣∣∣∣β̂(b)
− ̂̃β(b)

∣∣∣∣∣∣∣∣2
2

)

6
1

B

B∑
b=1

Ep

(∣∣∣∣∣∣∣∣β̂(b)
− ̂̃β(b)

∣∣∣∣∣∣∣∣2
2

)
6

c̃3nv
n2
0v

= o(1)

by lemma 5 and provided that
nuv
n0v

= O(1) with 1/2 < u < 1. The result (32) follows

then by using also assumption (H5). �
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