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1 Asymptotic assumptions
Assumptions: population-based RF model-assisted estimator fﬁ I

To establish the properties of the proposed estimators, we will consider three categories
of assumptions: assumptions on the sampling design, assumptions on the survey vari-

able and, finally, assumptions on the random forests.

(H1) We assume that there exists a positive constant C' such that supgcy. |yk| <

C < oo.

(H2) We assume that lim % =me (0;1).

vV—00 v

(H3) There exist positive constants A and A* such that Ignbn T = A >0, kr?ig Mo =
cUy NAS

v

A* > 0 and limsupn, max |mg — w7 < 00.
o0 kLU,

(C1) The number of subsampled elements N/ is such that lim, ,,, N/ /N, € (0;1].
Assumptions: sample-based RF model-assisted estimator 7,

(H4) We assume that there exists a positive constant C; > 0 such that
Ep{(fk — ) (1 —Wz)|735}‘ <C

Ty MaXgLreU,




(H5) The random forests based on population partitions and those based on sample

partitions are such that, for all x € R? :

E, (7iss() — ey () = o(1),

where 7/7~\1rf(x) is given by

(b,8)

- 1 B 1/15 ]le€A<S) <X79é5)>

myy (X) - E Z =~ (S) Ye
teU, 7 b=1 N(x,6,")

R s b,S
with N(x, 0”) = Yep, 0471 s (xo) and
(b0)
) = 3 Ly et
mpp(X) = - = U Ye
Lel, B b=1 N(X7 91(7 ))

. 7 U b,U
with N(x, 491() )) = Zker ¢,(§ )]lxkeA(U) (x,e,ﬂU))‘

Below, we include a graph illustrating the convergence of the difference ﬁ%«f — My f
towards 0 in L? where the regression function was defined as m(X) = 2+2X,+ Xy + X3,
with X7, X5 and X3 defined as in Section 6 from the main paper. The population sizes
were such that the sampling fraction was of 10%. Similar results can be obtained using

other simulation parameters.

(C2) The number of subsampled elements n! is such that lim, . n! /n, € (0;1].
Consistency of the Horvitz-Thompson variance estimator

(H6) Assume that lim max |E, {(L;I; — m7;) (Ixly — mpme) }| = 0, where Dy y,

v—004,5,kL€Dy N,

denotes the set of distinct 4-tuples from U,.

2 Asymptotic Results

2.1 Asymptotic results of the population RF model-assisted

: *
estimator ¢; f

The population RF model-assisted estimator is given by

%\:f _ Z m:f(xk) + Z m)

Tk
keU, keS,
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where fﬁjf is the sample-based estimator of m by using RF built at the population
level (for more details, see relation (13) from the main paper):
ok 1 N*
mrf(Xk) = Z _WZ (Xk>yf7 (1)
tes,

where
(b,U)

B
— 1 L xp€A*WU) (xk,6£U>)
Wi) =75 -
B N*(x,0,")

and N*(Xk’ HIEU)) =3 eun wéb’U)]lx,,eA*(U) (xk,G,EU)) is the number of units falling in the

terminal node A*() (xk, QIEU)> containing x;. The estimator ﬁ@jif(xk) can be written

as a bagged estimator as follows:

)
’I‘f Xk ree Xk’? )7

Mm

b=1

*(b)

where M. (X, HZEU)) is the sample-based estimation of m based on the b-th stochastic

tree:

v )
o~k ]_ ¢ XZEA*(U) Xk ,0
il e 0) = 37+ (o)

~ Ye. (2)
ST Ne(x6,7)




*(b)

ree

(U))‘

For more readability, we will use in the sequel my,..(xx) instead of mtri(xkﬁb

Consider the pseudo-generalized difference estimator:

pgd_zm Xk+zyk )7

keU, keSy

where m} f(xk) is the population-based estimator of m by using RF built at the pop-

ulation level (for more details, see relation (12) from the main paper):

xi) = Y Wi (xe)ye

LeUy

The estimator m;, can be written as a bagged estimator as follows:

f Xk B § mtree Xk?

*(b)

and my,...(Xx) is the predictor associated with unit k£ and based on the b-th stochastic

tree:

1/11@7(])]1 *(U) )

~ x(b) xp€A (xk,eb )

mtree(xk) = Z ~ U Ye- (3)
¢el, N~ (Xk7 Qé ))

*(b)

ree

ﬁltme depends on 91()

We remark that my,..(xy) is the Horvitz-Thompson estimator of mm@(xk) As before,

) but, for more readability, we drop 01() from the expression of
i er (Xe).

*(b)

re. and mt(b) Consider for that

We give in the next equivalent expressions of m, ree

the B partitions built at the population level: 73(*] = {PU }b=1‘ For a given b =
1,..., B, the partition 73;;(1)) build in the b-th stochastic tree is composed by the J;;

disjointed regions: Pp”) = {A;(bU)}‘j]iU]_. Consider z|" = (1, care; s I eA*(bU))T
bU

where 1 =1 if x; belongs to the region A;(w) and zero otherwise for all j =

XkGA;(bU)
1,..., ;. We drop the exponent U from the expression of zz(b) for more readability.

Since 75[*](1)) is a partition, then x; belongs to only one region of the b-th tree, so the
#(b)

vector z, ~ will contain only one non-null component. Consider for example that x;, €
A;-(w then mtﬁgl(xk) is the mean of y-values of individuals ¢ for which x, € A (bU)
b,U)
wé 1 _ o0
~ % b X[,EA,- % bU
mtvgel(xk) = Z j\vf*(b) - Ye, for X € A (
Lely, J



where ]v;(b) is the number of units belonging to the region A;(bU)

* b) (b, U . N
( Z¢f XGA*(bU)’ j - 1’7JbU (4)
Lel,
Then, ﬁzfﬁié(xk) can be written as follows:
~ (b (b ~x(b)
m]\g,gf(xk) = (Zk( ))Tﬁ , keU, (5)
where

N*(b) <szbU *b Z(b))T> Zw(bU *b

Lel, el

~x(b
Remark that 3 @ may be obtained as solution of the following weighted estimating

equation:

S 2Oy — ()8 ) = 0

LeUy
A*(bU)

Since the regions A;""',; = 1,...,Jy;, form a partition, then the matrix

> eu, PP 7O (72N g dlagonal with diagonal elements equal to N ®) the number
of units falling in the region A; U for all j=1,...,Jy. By the stopping criterion, we
have that all N ®) > Ny, > 0 for all j, so the matrix > et P75 (22N s always

invertible and B 1s well-defined.

*(b)

. . b
Consider now 7, +(0)

®) (x1,), the estimator of the unknown ;" (x;,). Then, ;" (x;)

is the weighted mean of y-values for sampled individuals ¢ belonging to the same region

A;(bU) as unit k :

(b7U)
o 1 Y 4300
o (x) = > — o

*(b)
tes, N;n

ye for x EA;(bU)

and we can write:
~ %(b) #(D)\T ()
mtree(xk) (Zk ) I8 7k € UU (6)

where
~#(b) bU) _x(b) , *(b b.U),*(
5 (S eatitr) X L
Lel, EESv

*(b) *(b))T

. ~#(b) . . (b,U) .
In the expression of 3, we do not estimate the matrix Y ,.,; ¥, 'z, (2, since

it is known and besides, we guarantee in this way that we will always have non-empty



terminal nodes at the population level. So, B*(b) will be always well-defined whatever
the sample S is.

Let denote by aj = 7Tk_1]k — 1 for all k£ € U,, where [} is the sample membership,
I, = 1if k € S and zero otherwise. In order to prove the consistency of tA;ﬁf as well as
its asymptotic equivalence to the pseudo-generalized difference estimator tApgd, we use

the following decomposition:

1 1~ 1 . .
N (t:f - ty) - N (tpgd - ty) N Z a (M (Xi) — 1y (X))
Y v v k:er
I~ o
= ()~ Z 3 2 (i) - e ) | ()

Y keU,
We will prove that each term form the decomposition (7) is convergent to zero. We

give first several useful lemmas.

Lemma 1. There exists a posilive constant ¢ such that:

n ~ 0 -
Fng(tpgd — )" <.

v
Proof. First of all, from relation (1), m;(x;) is a weighted sum at the population level
of y-values with positive weights summing to one (see proposition 2.1. from the main

paper). Then, we get that sup,cp, [m;;(xx)| < C by using also assumption (H1). We

have:

1 ~ 1 ~
F(tpgd —ty) = N Z v (Y — mrf(xk))

v Y keU,

~ 2

AN (e —m Xk))
1
A

Ty T MaXgec, | The — TrT| 2 9 s 9
< (M + a ) v 3 O+ 5 0))
keU,
<G
by assumptions (H1)-(H3). |
Lemma 2. There exists a positive constant ¢o not depending on b = 1,..., B, such

that
~x(b ~x*(b ~Nv
Ep||5()—ﬁ()||§<6]2v2 forall b=1,...,B.
Ov

6



Proof. We can write

B*(b)_g*(b) _ (Zwa (b)) > (Z w(bU *( yﬁ_zwéhU)Z;(b)yﬁ)

LeUy Les Lely
= (wa (2;")" ) (Z acty" ! ) (8)
LeUy Lely,

Let denote by T*® = > v, wéb U) *( ( Z( ))T. As already mentioned before, the ma-

trix T*®) is diagonal with positive dlagonal elements given by N;(b)

the number of
units falling in the region A;(bU) (see relation 4) for j = 1,..., JJ, and by the stopping

criterion, we have that N;(b) > Ny, > 0. We obtain then

~ 1
*(b)\—1 — < -1 —
[(T*) 7|2 j max <—Nf(b)> <N,', forall b=1,...,B (9)
J
where || - ||2 is the spectral norm matrix defined for a squared p x p matrix A by

| Al = SuDxere |x||a0 || AX|2/[|X[[2- For a symmetric and positive definite matrix A,
we have that ||A||ls = Anaz(A) where A\pq.(A) is the largest eigenvalue of A. We get,
forb=1,...,B:

2
~x(b) ~x(b) o ’
BB -8 ll; < [HN(T IIEE H—Zw%w)z(b)e ]
Lel, 2
2
bU
= N2 p Zafwg (10)
Ov Y teu, 2
and
b, 2
U)
ZO"W( Zk yk
Y keU, 2
1 b,U) x(b) b,U) (b
= W(ZU D2llz BB (0f) + > > ol e (2 ) 2B (aren)
" kel keU, e,
0k
L[ ny  MymaXy ey, kote| The — Trml 1 o) "
s n_v(wﬁ 2 N 2 @l
keU,
Co
S 11
M (11)

by assumptions (H1)-(H3) and the fact that ||zz(b)||§ = 1forall £k € U, and b =
1,...,B. From (10), (11) and assumption (H1), we obtain that it exists a positive

constant ¢, such that

~x(b)
BB —




Result 2.1. Consider a sequence of population RF estimators {t f} Then, there exist

positive constants Cy, Csy such that

1 C C
E, N (t,’ff t ) < \/nl_v + Noi’ with &-probability one.
Na
If %= =0(1) with 1/2 < a < 1, then
NOU
1 C ‘ )
E, Fv ( rf = ty) < N with &-probability one.

Proof. We get from relation (7) :

1
< —=E,
N, "

t:f —ly pgd

59
+ 5> 3B

b=1 =Y

~ x(b b
VB D cn(ee(xx) = Mirce (1))
keU,
Lemma 1 gives us that there exists positive constant C; such that

1 —~
_Ep tpgd - ty

< —. 12
v (12)

Now, by using relations (5) and (6), we can then write for any b=1,..., B:

o B~
Z Oék(mtyeji(xk) mtree Xk Z ak - /6 )

keU, keU,
and
1 +(b) ~ «(b) ol ) =) )
FEP Z O (mtree(xk) mtree(XkJ))‘ ( Z ORZy ) (]EpHﬁ - 18 ||2)
v keU, Y keU, 2
(13)
and

1 *(b ? 1 b
L5 aat|[ = (TR Y Y By )

D
Y keu, 2 kel, keU, LcU,
£k
1 [ ny,  nymaxgsepy,|The — TEml
< = + .
< (3 4 . 3 I
Cy
< = 14
< 2 (149)

by assumptions (H1)-(H3) and the fact that ||zz(b)||§ = 1foral £k € U, and b =
1,...,B. Then, from relations (13), (14) and lemma 2, we get that there exists a

positive constant Cy such that, for any b=1,..., B, we have:
1 . «(b) ®) Gy &N, Cs
| 2 anlrf () — 0 Gau))| <42t < (15)

keUy



by using also the assumption (H1). The result follows then from relations (12) and

(15). n

Result 2.2. Consider a sequence of RF estimators {t
< 1, then

O(1) with 1/2 <

Vi (tA:f - ty) = \]/V_n_v (tApgd - ty) + op(1).

=

Proof. We get from relation (7) and lemmas (1) and the proof of result 2.1 (relation
15) that

B
NP /Ty 1 x(b ~ (b
N ( rf ty) - N (tpgd "‘ B Z [ (mtfel(xk) - mt£e23<xk>> :
v v b=1 keU,
V1w V1
B Nv (tpgd O NO’U
oy o~
= N, (tpgd ) + op(1)
. N .
provided thatN— =0(1) with 1/2 <a < 1. |
Ov

Result 2.3. Consider a sequence of population RF estimators {t f} Assume that
NCL
NOU
for the asymptotic variance AV, (tTf) . That 1s,

Jim E, ( N2

Proof Consider the following decomposition

= O(1) with 1/2 < a < 1, then the variance estimator Vrf( ,,f) is design-consistent

Tosleg) - 47,5 ) =0

v

= T (@p (qul?:f) - @'p (szli\pgd» + N <§7p (qulaogd> — AV, (Ngli\:f)>

e (7, (R - 47, ()

where i} (N tpgd) is the pseudo-type variance estimator of V, (N tpgd) =
AV, (N;ltj ) given by

~ The — e Y — My p(Xi) Yo — M4 (Xe)
vy (Nv pgd - ZZ “ L . ! Iy I,

T,
U keU, LeU, k ¢

Now, to prove that the consistency of the first term from right of (16), we use the
same decomposition as in Goga and Ruiz-Gazen (2014). Denote €, = yx, — m; (X,

n ~ Tre — TETY
€ = Y — m;ff(xk) and Cry = —]klg Then,

TeT KT

no(V, (N;85) =V, (N Ega)) o Z > cue (Exér — )

v keUy LeUy

9



Z > cue (6 — éx) (e — ) + Erlee — &) + Eclér — &)

” keUy, LeU,
== Al + A2 —+ Ag.

For all k € U,, éx — & = my;(xx) — My ;(xx) and thus,

n Ny MaXp LU, | The — TrT]
E,|A;| < <A2;fv 4+ o ) > Ep(ér — ),
Y keU,

by assumptions (H2)-(H3). Therefore, it suffices to show that, for all k& € U, one has

E,(éx — é€)? = o(1) uniformly in k, which we show next. We have
E, (i) (x) — Z By (s (xi) — igied (%1))*
We can write by using relations (5) and (6):
i) — i) = ()@ -5

and then, by using lemma (2),

B

. . 1 ) 121135 ®  Z+0)
E, (i () — sy () < 5 DBy (Il 1B™ A7)
b=1
< ca N,

NG,

“ =0(1) with 1/2 <a < 1.
Ov
Using the same arguments, we obtain that E,|As| = o(1) and E,|As| = o(1). We

quantity going to zero provided that

get then
nvEpW]p (Nv_lt?-f) - i\)710 (N_ltApgd) | = o(1).

v

The second term from right of (16) concerns the consistency of the estimator of the
Horvitz-Thompson variance computed for the population residuals y, — m f(xk), k e
U,. The proof of this consistency (Breidt and Opsomer, 2000) requires assumptions

only on the higher order inclusion probabilities (H6) as well as finite forth moment of

Yk — m:f(xk) :

N, 3 (o iy ) < Ni Y i+ (g (xi))') < oo,

keU, keUy
So,
nvEpr (Nu_l%\pgd> - AVP (Nu_ltA:f) | = 0(1)

and the result follows.

10



2.2 Asymptotic results: the sample RF model-assisted estima-
tor ¢,

The sample RF model-assisted estimator is given by

n Ye — My p(Xp)
by = D M) + 35—
keUy keSy

where m, ¢ is the estimator of m built at the sample level and by using RF based on

partition built at the sample level (for more details, see relation (17) from the main

paper):
My p(Xk) Z We (Xk)ye,
(€S,
where
B z/;éb’s)]l

1 xEA(S) <xk,9,§s))

Wg(Xk) = = =
B b=1 N(Xk7 925))

and ]\7<Xk79l(75)) = > ies, ”leéb’s)]lx£eA<s> <Xk79£s)> is the estimated number of units

falling in the terminal node A®) (xk, Hés)) containing x;. As in Section 2.1, the esti-

mator m,s(x;) can be written as a bagged estimator of m as follows:

mrf Xk B E mtree Xk

(b)

and m,,..(Xx) is the estimation of m based on the b-th stochastic tree:

(Ot ()
=R 1 7 x,€A) (x4,,0
mgz)ee(xk): —_ = (g) - >yé (16)
tes, Tt N(xx.0,7)

(b)

As in Section 2.1, for more readability, we note in the sequel m;,..

miﬁle(xk, 91()3)). Consider the pseudo-generalized difference estimator:

szgd _ Z mrf(xk Z Yk — mrf Xk

keUy keSy

(xx) instead of

where m, s is the estimation of m built at the population level by using RF based on

partition built also at the population level (relation (9) from the main paper):

myf(Xg) Z We(Xk)ye

LeUy

where
(b U)

X/EA(W <xk 9<U>)

Wg Xk

IIMU:J

Xk, eb

11



with N(xk, ) > rew, ) (bU)q x[eA<U> (xkﬂz(,U)) is the number of units falling in the

terminal node AW) <xk,9£ )> containing x;. The estimator m, s can be also written

as a bagged estimator as follows:

mTf Xk E mme Xk

and 6.0}
1/)@ ’ ]lxgeA(U) (xk,el(,U)>

~ (b
mgrle(xk) = Z Ye.

~ U
teu, N(le@z() ))
As in the previous section, we will write m,; and m, in equivalent forms. Consider
for that the B partitions build at the population level 73[] = {75((?)}5 ,- For a given
-~ b) U\ J
b=1,..., B, the partition 73( is composed by the disjointed regions PO = {A( } .
Consider z,(cb) = (1

o ABD) ]lx eA(JbU)) where ]].xkEA(’bU) = 1 if x;, belongs to the
bU 7 ~
region Ag-bU) and zero otherwise for all j = 1,..., Jyy. Since P[(Jb) is a partition, then

X belongs to only one region at the b-th step. Suppose for example that x; € A§bU),

then fﬁg)ee(xk) is the mean of y-values for individuals ¢ for which x, € A§-bU) :
z/;éb’U)]lx ca®0)
) = 3 o e )
¢eU, j

where N;b) is the number of units belonging to the region AgbU)

NP =" o, =1, (17)
LeU, ’
Then, Tﬁgi)ee(xk) can be written as a regression-type estimator with zgj) as explanatory
variables:
~ (b) T RO
mtree(xk) - (Zk ) 18 ) k S Uv (18)
where

-1
<Z¢(bU ,(gb))T) Zwéb,U)Z(b)

Lely Lely

(bU) (b)(z(b))‘r

Based on the same arguments as in Section 2.1, the matrix ), ., ¥, )

is diagonal with diagonal elements equal to N( ),] = ., Jyu. By the stopping
criterion, we have that all N;b) > Ny > 0, so the matrix Z%U wzb 0) (b)(z?))T is

~(b
invertible and 6( : is well-defined.

12



Consider now the B partitions build at the sample level Pg = {735.;1))}{?21. For a given

(bS) }Jbs

b=1,...,B,the partition ﬁéb) is composed by the disjointed regions ﬁéb) = {Aj ey

. NONE T —1;
Consider z,’ = (]IXkeAng), e ]l{xkeAf,’;))s}) where ]IXkeA;m = 1 if x; belongs to the
region A(-bs) and zero otherwise for all j = 1,...,J,s. Here, the hat notation is to

design the fact that the vector zk depends on random dummy variables 1 AP

Since {AEbS }Jbs form a partition, then x; belongs to only one terminal node. Suppose
= (b)

Myree(Xi) is a Hajek-type estimator:

for example that x; € Aj ), then m

LI sy
XpEA:
Wi (i) = > — ;;; L for xp e AP,
LeS, e Nj

~

where N;b) is the estimated number of units falling in the terminal node A§bs)

(b,S .
Z wz ", cats G=1. s
LeS,

Then, ) (xx) can be written also as a regression-type estimator with i,(cb) as ex-

tree

planatory variables:
iyee(e) = (2) B k € Uy, (19)

where

(Z ] <W) > w”

LesSy EGSU
~(b
As in Section 2.1, remark that [3() may be obtained as solution of the following
weighted estimating equation:

> o5 @) B) =0
Ty

LeSy

Since {A;bs)}}]b:sl is a partition, then the matrix ), g wgbs b)( gb))T is diago-

nal with diagonal elements equal to NJ@

v Ty

.3 = 1,...,Jys. By the stopping crite-

rion and assumption (H3), we have that >, o %@b’s) > ng, > 0, so

XZGAE?
~(b

> ees, Wiegbéb’s)iéb) (iéb))T is always invertible is and ,8( " is well-defined whatever the

sample S is.

We need to consider also a second pseudo-generalized difference estimator:

tpga = Zmrf Xp) + Z S mrf %)

keUy keS,

13



where

= 2 : 1 j : we xp€A) (x ),9(5)
mrf(Xk) — = ¥4 ( kY )

(e, 1 N(xw 6y
B
1 = (b)
= E mtree(xk)
b=1
with N(X ) > (bs and
k> 0eU, XzGA(XkﬁIES))
(b,5)
~ ) (Lr e WS NE) ?Jé
mtree(Xk> = QZEA (Sk 9 : >TIB ’ k © Uv (20)
ZEU'U (Xk7 9( )

for

(Z waS §))T> Zw(bszz "

LeUy Lely

The matrix . w(bs ( gb)) is also diagonal with diagonal elements equal to
=(b)
ZeeUU %b S)]lx A >ng, > 0,7 = ., Jps s0 3 is also well-defined whatever the

sample S is. In order to prove the consistency of the sample-based RF estimator E,f,

we use the following decomposition:

s = 1) = 5 S i) = ). (21)

Y keU,

2
—_—
o+
[
~
<
~—
|
2=

We will give first several useful lemmas. The constants used in the following results
may not be the same as the ones from Section 2.1 even if they are denoted in the same

way for simplicity.

Lemma 3. There exists a positive constant ¢ such that:

Ty

WEP@\PW N ty>2 <

Proof. The proof is similar to that of lemma 1. We also have that sup,cp; [m,7(x5)| <

C' by using assumption (H1). Further,

~ 2
tpgd - ty Ty 1 Ny MaXgLocU, |7Tk€ - 7T/€7T€| 2 2 ~ 2
n,Ey ( N, ) < (M b 22 "N, D> (b + (s (xe))?)

Y keU,

<G
by assumptions (H1)-(H3). |

14



Lemma 4. There exists a positive constant ¢y such that:

~

Ty ~ -
Ep<tpgd - ty)Q < Co.

N2
Proof. Using (20), we get that fAfL,,f(xk) can be written as a weighted sum of y-values

with positive weights summing to unity, so sup,cy, |T/7\er(xk)| < C by using also as-

sumption (H1). Now,

tpgd —ty = > oy — myp(x))

keU'U
and
Ny . = )
m]Ep(tpgd —t,) = [O‘k Ye — mrf(xk)) }

v “ keU,

+ Z Z [ ﬁl”f(xk)xyf - ﬁlrf(xé))Ep(akadﬁs)]

” ker £k LeU,

2nv o~ o~ A
< By |l sl — g0l . By Po)|
Ny kEU, L4k (€U, Y
< 627
by assumptions (H2) and (H4). |

Lemma 5. There exists a positive constant ¢ not depending on b such that:

2 C3Nn
31y
<22

2 L

~(b) =(b)
E, - B3

forallb=1,... B.

Proof. Let denote by TO® = > e, %wéb’s)iéb)(igb))T. As already mentioned, the
Jpg X Jpg dimensional matrix TO s diagonal with diagonal elements given by
ﬁj(b) =Y es, %wéb,s)]lxﬁA;b) the weighted somme of units falling in the region A for
j=1,..., Jys and by the stopping criterion, we have that N; ) > ngy, > 0. The matrix

T® is then always invertible with
(T Y|y < ng! forall b=1,...B. (22)

Now, write

~@) =0 (5,5 b . =(b)
— — T(b ), ( _ T
B -8 ( > Zzb B

LESy
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= (T Z @Z’(bs ( %Ei)ee(xd)

LeSy

Lel,
~ ~ (b ~
where B = g a0 (g — iy, (x0)) with Sy, B = 0. We have that [|5”]], = 1

~ (b
and sup,cy, ]ﬁzirle(x@ﬂ <Cforal ¢ €U,and b=1,...,B, then:

1EP)12 < 202,

Following the same lines as in lemma 4, we get that it exists a positive constant Cj

not depending on b such that

Z OégE(b

EGUTJ

g—, forall b=1,...B. (24)

We obtain then from relations (22) and (23) that:

~w  =®]?
E, -8 < E, | MII(TY) 1||2 > k)
2 Ny teU,
S N2 ZO%E
eer

2

< ]\2 G
ng, Ny
C3My

S )

by assumption (H2). [

Result 2.4. Consider a sequence of sample RF estimators {tA,,f} Then, there exist

positive constants Cy, Cy such that

1 ~ 01 Cy
— K|t —t,| < .
Nv P| f y| ~N \/n_v + Now
IF 2 — O1) with 1/2 < u < 1, then
Moy

C
Vi’

Proof. We use the decomposition given in relation (21):

N (tATf — ty) < with &-probability one.

1 . 1 = 1 N =~
E(trf —t,) = E(tpgd —ty) — A ker (M p (Xp) — My (Xi)).-

16



Now,

1 - =
N > (i (xi) = 1y (%))

Y keU,

= (b)
Z 873 mtree (Xk) mtree (Xk))

ker

B
EZF

v

E,

and using relations (19) and (20), we get:

1 (b = (b) () ~@m) =0
B | D i) = ()| < By (‘ ~ || |87 -
v ke, Y keU, 9 2
2 2
® =0
< L |E, Z a2 B, |87 -8

We have that ||i,(€b)||2 =1forall ke U, and b=1,...,B. We can show then by using
the same arguments as in the proof of lemma 4, that there exists a positive constant

C) such that

2 ¥
<%

Ny

E Oszk

Y keU,

\

2

which together with lemma 5 gives us that there exists a positive constant Cs such

that
1 A ~ C
~ B Zak(mrf(xk>_mrf(xk))‘ < = (26)
v Moy
keUy
Now,
1 1 1 - 1 (®)
. b ~
FEP trp =ty < FE pgd ty| + = ZFEP Z ak<m1(fr)ee(xk) Miree (X))
v v =1 " keU,
< Cy " Co
vV My Now
by using lemma 4 and relation (26). |
Result 2.5. Consider a sequence of RF estimators {t,;}. Assume that Do _ O(1)

Ny
with 1/2 < u < 1. Then,

VG oY

N (trf —ly N (tApgd - ty) + op(1).

Proof. We have

VI () = Y T — 1)+ S (g () — (). (27)

N,
v keU,



Now,

o (Mg (Xk) — My (X))

Nv
= VS i 00) — i (60)) + Y S (e () — i 36 (28)

provided that Ty
Now
right-side of relation (28). We have:

%Ep (Z v (g (x) — mrf<xk))>

v keU,

N2(1j)L\/\ S, (s 0e) — g 30))
keU,

T = Z Z @mTf (xk) — mrf(xk)H”%rf(X@) mr‘f(xé)‘ maX UE (OékOéd'Ps)‘

t#keU
Ny keU, (£k (U,
1+ ))2 _ 2
< (ﬁv( 2 ) Z E, (m,,f Xp) m,,f(xk)> = o(1),

by assumptions (H2), (H3), (H4) and (H5). It follows then that

= 0O(1) with 1/2 < u < 1. Consider now the second term from the

N

2N (e (xi) — e p(x1)) = op(1). (30)

Relations (27), (28), (29) and (30) give then the result. |

Result 2.6. Consider a sequence of population RF estimators {%;f} Assume also that
nu

= O(1) with 1/2 < uw < 1. Then, the variance estimator Vrf( t.) is asymptotically
Ov

design-consistent for the asymptotic variance AV, (trf) . That is,

Tosloy) - 47, ) =0 (31)

v

Proof. The proof follows the same steps as those of result (2.3). We need to show that

By | (o) - mrf<xk>)2] —o(1), (32)

18



uniformly in k € U,. We have i, ;(x) — s (Xp) = iy (%) — g (Xi) + g (X1) —

my¢(Xy) and

B
~ = 1 (b = (b)
By (i (%) = g (x0))° < 5 D B (%) = Mgpee (X))’

)

~p) =0
B -8

v — O(1) with 1/2 < u < 1. The result (32) follows
oy
then by using also assumption (H5). |

by lemma 5 and provided that
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