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Résumé

Ces dernières années, l'apprentissage automatique a suscité un intérêt considérable dans les
o�ces nationaux de statistique. Grâce à leur �exibilité, ces méthodes peuvent s'avérer utiles au
stade du traitement de la non-réponse totale. Dans cet article, nous menons une étude par simu-
lation a�n de comparer plusieurs procédures d'apprentissage automatique en termes de biais et
d'e�cacité. En plus des approches classiques d'apprentissage automatique, nous évaluons la per-
formance de certaines approches d'aggrégation qui utilisent di�éntes procédures d'apprentissage
automatique pour produire un ensemble de poids ajusté pour la non-réponse.

Abstract

In recent years, there has been a signi�cant interest in machine learning in national statistical
o�ces. Thanks to their �exibility, these methods may prove useful at the nonresponse treatment
stage. In this article, we conduct an empirical investigation in order to compare several machine
learning procedures in terms of bias and e�ciency. In addition to the classical machine learning
procedure, we assess the performance of ensemble approaches that make use of di�erent machine
learning procedures to produce a set of weights adjusted for nonresponse.

Introduction

Most surveys conducted by national statistical o�ces collect information on many survey
variables and the aim is to estimate many population parameters : such surveys are often referred
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to as multipurpose surveys. Response rates have been declining over time. Thus, there is an
increased concern for the potential of nonresponse bias. Unit nonresponse, which is characterized
by the absence of information for all the survey variables, is usually treated by some form of
weight adjustment procedure. The main idea behind a weighting adjustment consists of in�ating
the weight of the respondents to compensate for the nonrespondents. The in�ation factor is
de�ned as the inverse of the estimated response probability to the survey. The treatment of unit
nonresponse starts with postulating a nonresponse model describing the relationship between
the response indicators (equal to 1 for respondents and 0 for nonrespondents) and a vector
of explanatory variables. Determining a suitable model is thus crucial. This modeling exercise
consists of two steps : (i) select a vector of explanatory variables that are predictive of the
response indicators and that are related to the survey variables ; (ii) Determine a suitable model
for the relationship between the response indicator and the selected explanatory variables ; see
Haziza and Beaumont (2017).

In recent years, there has been a substantial interest in machine learning methods in na-
tional statistical o�ces. Machine learning procedures provide �exible approaches able to adapt
to complex non-linear and non-additive relationships between a response variable and a set of
predictors and may prove useful in the context of big data sets. Although these procedures can
prove useful in the context of unit nonresponse, one should exercise some caution. Indeed, many
machine learning procedures are known to have very good predictive performances. However,
in the context of unit nonresponse, one face an estimation problem rather than a prediction
problem. Our goal is to estimate a �nite population parameter (e.g., a population total) and
the most predictive nonresponse model may not necessarily lead to the best estimator (in terms
of mean square error) of a population total. This will be illustrated in Section 3. Our problem
here is di�erent from what is encountered in the context of imputation for imputing item non-
response. In that context, the most predictive model is expected to perform well in terms of bias
and e�ciency.

In this paper, we conduct an extensive simulation study to compare several machine learning
procedures in terms of bias and e�ciency. Other empirical investigation on the use of machine
learning in the context of unit nonresponse is surveys can be found in Lohr et al. (2015), Gelein
(2017) and Kern et al. (2019).

1 The setup

Consider a �nite population U of size N ; i.e., U = {1, . . . , k, . . . , N}. In this paper, the
aim is to estimate the population total of a survey variable y, ty :=

∑
k∈U yk. To that end,

we select a sample S, of size n, according to a sampling design, P (S | Z), with �rst-order
inclusion probabilities πk, k ∈ U, where Z denotes the matrix of design information. In the
absence of nonsampling errors, a design-unbiased estimator of ty is the well known Narain�
Horvitz�Thompson estimator

t̂yπ :=
∑
k∈S

dkyk, (1)

where dk = 1/πk denotes the design weight attached to unit k.
In the presence of unit nonresponse, the survey variable y is collected for a subset Sr ⊂ S.

Let Rk be a response indicator attached to unit k such that Rk = 1 if unit k responds to the
survey and Rk = 0, otherwise. Let pk denote the response probability associated with unit k.
In our empirical study, we make the following assumptions : (i) The response indicators Rk are
mutually independent ; (ii) The response indicators RK are independent from the sample selection
indicators Ik, where Ik = 1 if k ∈ S and Ik = 0, otherwise. This assumption implies that the
response probability of a unit y is essentially determined by �xed respondent characteristics.
This assumption may be violated in the context of adaptative collection designs (e.g., Groves
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and Heeringa, 2006). (iii) the positivity assumption is satis�ed ; i.e., πk > 0 for all k and pk > 0
for all k.

A naive estimator of ty is given by

t̂y,naive = N

∑
k∈S dkRkyk∑
k∈S dkRk

. (2)

Alternatively, the population size N in (2) may be replaced by the estimated population size
N̂π =

∑
k∈S dk. Unless the data are Missing Completely At Random (MCAR), the estimator

t̂y,naive is biased. The bias may be signi�cant if the nonresponse rate is high and/or the responding
units and the nonresponding units exhibit a di�erent behavior with respect ot the survey variable
y.

If the response probabilities pk were known, a design-unbiased estimator of ty is the so-called
double expansion estimator (Sarndal et al., 1992) :

t̂y,DE :=
∑
k∈S

dkRk
yk
pk
. (3)

In practice, the pk's are unknown and are replaced by estimated response probabilities p̂k. It
is common practice to postulate a nonresponse model, which is a set of assumptions about the
unknown nonresponse mechanism. More speci�cally, we postulate the following model :

E(Rk | yk,xk) = m(xk), (4)

where m(·) is either a predetermined function in the case of a parametric model or is left unspe-
ci�ed in the case of a nonparametric model, and xk is a vector of fully observed variables (i.e.,
available for both the responding and the nonresponding units). The resulting estimator, often
referred to as the propensity score adjusted estimator, is given by

t̂y,PSA :=
∑
k∈S

dkRk
yk
p̂k
. (5)

An alternative estimator of ty is the Hajek estimator

t̂y,H :=
N

N̂

∑
k∈S

dkRk
yk
p̂k
. (6)

Although both t̂y,PSA and t̂y,H exhibit the same asymptotic bias, they may di�er signi�cantly
from one another in terms of variance. If the nonresponse model (4) is correctly speci�ed, both
t̂y,PSA and t̂y,H will be nearly unbiased. The weights adjusted for nonresponse are de�ned as
w∗k = dk/p̂k.

2 Estimation vs. prediction

In this section, we illustrate empirically that the best predictive model does not necessarily
yield the best estimator of ty in terms of mean square error. Indeed, including predictors that are
highly predictive of Rk may lead to very small estimated response probabilities p̂k, which may
result in extreme adjusted weights w∗k. In this case, both (5) and (6) may be ine�cient. How then
to choose the xk variables to incorporate in the model ? A common recommendation is to include
the variables xk that are related to both the indicator variable Rk and the variable of interest y ;
e.g., Little and Vartivarian (2005), Beaumont (2005). Indeed, if an x-variable is strongly related
to Rk but not to the survey variable y, it is not desirable to include it in the nonresponse model,
since it will not help reduce the nonresponse bias but may contribute to increasing the variance
of the point estimator.
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As an illustration, we generated a �nite population of size N = 10, 000 with seven variables :
one survey variable y and six auxiliary variables x1 to x6. We �rst generated the x-variables accor-
ding to the following distributions : x1 ∼ Gamma(5, 1) ; x2 ∼ Gamma(1, 5); x3 ∼ Gamma(1, 6);
x4 ∼ Gamma(1, 10); x5 ∼ Gamma(1, 20); x6 ∼ Gamma(0.5, 50). Given x1-x6, we generated a
y-variable according to the linear model

yk = 2− 2x1k + 4x2k + εk,

where the errors εk were generated from a normal distribution of mean equal to zero and variance
equal to 1.

From the population, we drew 10, 000 samples, of size n = 1, 000, according to simple random
design without replacement. In each sample, each unit was assigned a response probability pk
using the logistic function :

pk = 0.05 + 0.95 {1 + exp (−0.05x1k + 0.05x2k − 0.05x3k + 0.05x4k − 0.05x5k + 0.02x6k)}−1 .

This led to a response rate of about 50% in each sample. In each sample, the indicator variables
Rk were generated according to a Bernoulli distribution with probability pk. Our goal is to
estimate the population total, ty =

∑
k∈U yk. In our experiment, the variables x1-x6 are fully

observed and only the y-variable is prone to missing values.
In each sample, we computed two estimators of ty :
(i) The naive estimator given by (2).
(ii) The propensity score-adjusted estimator, t̂y,PSA given by (5), where p̂k was obtained

using the score method (described below) based on di�erent subsets of the variables
x1-x6.

The score method(Little, 1986, Eltinge and Yansaneh, 1997 ; Haziza and Beaumont, 2007) may
described as follows :

� Step 1 : Obtain preliminary estimated response probabilities, p̂LRk , k ∈ S, from a logistic
regression.

� Step 2 : Form 20 classes based on the estimated response probabilities, p̂LRk , using either
an equal quantile method.

� Step 3 : Perform weight adjustment within each class (i.e, divide the design weight dk of
the kth respondents in a given class by the response rate observed within the same class).

We computed the Monte Carlo percent relative bias of each estimator

RBMC(t̂) =
1

10, 000

10,000∑
b=1

(t̂(b) − ty)
ty

× 100,

as well as the Monte Carlo mean square error

MSEMC(t̂) =
1

10, 000

10,000∑
b=1

(
t̂(b) − ty

)2
,

where t̂(b) denotes the t̂ estimator in the b-th sample, b = 1, . . . , 10000. To ease readability, we
computed the relative e�ciency of the point estimators, de�ned as

REMC(t̂) = 100× MSEMC(t̂)

MSEMC(t̂y,π)

where t̂y,π is the complete data estimator given by (1). In addition, in each sample, we computed
the Monte Carlo percent coe�cient of variation of the adjusted weights w∗k de�ned as

CVMC =
100

B

B∑
b=1

sw∗(b)

w∗(b)
,
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where
sw∗ =

1

nr − 1

∑
k∈Sr

(w∗k − w∗)2

with w∗ = n−1r
∑

k∈Sr
w∗k.

Finally, we computed the Monte Carlo mean square error of the predictions de�ned as

MSE =
100

B

B∑
b=1

1

nr

∑
k∈Sr

(
p̂bk − pk

)2
.

The results are displayed in Table 1.

Estimator t̂y,naive t̂y,PSA t̂y,PSA t̂y,PSA t̂y,PSA t̂y,PSA t̂y,PSA
x1 x1-x2 x1-x3 x1-x4 x1-x5 x1-x6

RBMC -14.1 -13.0 -1.7 -1.8 -0.7 -1.1 -0.8
in (%)

REMC 540 480 112 118 117 149 218

CV (w∗) 0 17.4 19.6 21.7 30.1 46.7 64.2
in (%)
MSE 4.8 5.4 5.3 5.1 4.6 1.7 0.9

Table 1 � Monte percent relative bias and mean square error of several estimator of ty

The results in the table 1 can be summarized as follows :
� As expected, the naive estimator was biased with a relative bias of -14.1%. This result

is not surprising because the naive estimator does not take into account the variables x1
and x2 which are related to both Rk and y.

� The propensity score estimator t̂y,PSA based on the variable x1 exhibited a smaller bias
than the unadjusted estimator, which can be explained by the fact that it incorporates
the variable x1 which is related to both the probability of response and the variable of
interest y. The bias is explained by the fact that the variable x2 was not included.

� The propensity score estimator t̂y,PSA based on the variable x1 and x2 was nearly unbiased
bias because it included both x1 and x2 in the nonresponse model. In terms of relative
e�ciency, this estimator was the best with a value of RE equal 112. It is worth noting
that the other propensity score estimators were nearly unbiased but were less e�cient
than t̂y,PSA based on x1 and x2. In other words, incorporating x3 to x6 into the model
contributed in increasing the variance.

� The most predictive model of Rk included all the x-variables x1-x6. However, except for
t̂y,PSA, based on x1, the propensity score estimators based on x1-x6 was the worst in
terms of relative e�ciency with a value of RE equal to 218. In comparison with t̂y,PSA,
based on x1 and x2, this corresponds to a signi�cant increase of 194%. This result shows
that the most predictive model does not necessarily translate into the best estimator of
the total ty. This is supported by the values of the mean square of the predictions : 5.4
for t̂y,PSA based on x1 and x2 and only 0.9 for for t̂y,PSA based on x1-x6.

� A large dispersion of the adjusted weights w∗k led to estimators with a large variance.
This is why, in practice, it is desirable to limit the dispersion of weights.

3 Ensemble methods

In addition to commonly encountered machine learning procedures (see Section 4. ?), we
tested the performance of three ensemble methods. The rationale behind an ensemble method is
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to obtain estimated response probability using several (machine learning or non machine learning)
procedures and combining these probabilities in some way to obtain a set of weights adjusted for
nonresponse. Why use an ensemble method ? As we illustrate in Section 4, there is no machine
learning procedures that outperforms all the other competitors in all the scenarios. Indeed, a
machine learning procedures may do well in a particular scenario but not as well in another
scenario. However, one cannot tell in advance which procedure will perform well. An ensemble
method that combines several machine learning procedures, may outperform a single procedure,
which is an attractive feature.

Below, we describe three methods for combining the machine learning procedures : the �rst
is based on a calibration procedure similar to a model calibration procedure (Wu and Sitter,
2001) ; the second is based on re�tting (Duan and Yin, 2017, Chen and Haziza, 2019) ; The third
uses both re�tting and calibration.

Let p̂k = (p̂
(1)
k , . . . , p̂

(M)
k ) be a M -vector of estimated response probabilities associated with

unit k. The component p̂(m)
k in p̂k corresponds to an estimated response probability based on

the mth machine learning procedure, m = 1, . . . ,M .
The three ensemble methods are described below.
(1) Calibration Combining through calibration proceeds as follows : we seek calibrated weight

wk such that ∑
k∈Sr

G(wk, dk)

qk
(7)

subject to ∑
k∈Sr

wk =
∑
k∈S

dk

and ∑
k∈Sr

wkL(p̂k) =
∑
k∈S

dkL(p̂k),

where L(·) is the inverse of the calibration function F (·). The resulting weights wk may
be viewed as a scalar summary of the information contained in the M -vector p̂k. The
resulting estimator of ty is given by

t̂caly =
∑
k∈S

wkRkyk.

(2) Re�tting Re�tting consists of compressing the information contained in p̂k by �tting a
linear regression model with the response indicator Rk as the dependent variable and p̂k
as the vector of explanatory variables :

Rk =

M∑
m=1

β(m)p̂
(m)
k + εk. (8)

.
Let β̂ = (β̂(1), . . . , β̂(M))> be the least squares estimator of β = (β(1), . . . , β(M))>. We
de�ne the β̃ := (β̃1, . . . , β̃M ) = 1

<β̂,β̂>
((β̂1)2, . . . , (β̂m)2). where < ., . > denotes the

customary dot product in RM . Note that this standardization ensures that β̃ ∈ [0; 1]M

and
M∑
j=1

β̃j = 1. The vector of compressed scores p̂comk is de�ned as pcomk =< β̃, p̂k >.

Because of the standardization, the components, the compressed score p̂comk lies between
0 and 1. An estimator of ty through re�tting is given by

t̂comy =
∑
k∈S

dkRk
yk
p̂comk

.
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(3) Re�tting followed by calibration We start by obtaining the compressed scores p̂comk as
above. Then, we seek calibrated weights wk such that∑

k∈Sr

G(wk, dk)

qk
(9)

subject to ∑
k∈Sr

wk =
∑
k∈S

dk

and ∑
k∈Sr

wkL(p̂comp
k ) =

∑
k∈S

dkL(p̂comp
k ).

Unlike in (1) where there are M + 1 calibration constraints, we only have two calibration
constraints when calibration is performed after re�tting. The resulting estimator of ty is given
by

t̂com-cal
y =

∑
k∈S

wkRkyk.

4 Simulation study

We conducted an extensive simulation study to assess the performance of several machine
learning procedures (see Section 4.2) in terms of bias and e�ciency.

4.1 Setup

We generated several �nite populations of size N = 50, 000. Each population consisted of a
survey variable Y and 6 auxiliary variables drawn independently, three of which were continuous
and the remaining being discrete. First, the continuous auxiliary variables were generated as
follows : X(s) ∼ Gamma(3, 2), X(c1) ∼N(0, 1); X(c2) ∼ Gamma(3, 2) and X(c3) ∼ Gamma(3, 2).
The discrete auxiliary variables were generated as follows :X(d1) ∼MN(N, 0.5, 0.05, 0.05, 0.1, 0.3);
X(d2) ∼ Ber(0.5) andX(d3) ∼ UD(1; 5). We used two con�gurations for these predictors : (i) They
were independently generated ; (ii) Correlation between them was introduced through Gaussian
copulas.

Given the values of the auxiliary variables, we have generated several y-variables according
to the following models :

yk = γ0 + γ
(s)
1 X

(s)
1k + γ

(c)
1 X

(c)
1k + γ

(c)
2 X

(c)
2k + γ

(c)
3 X

(c)
3k +

5∑
j=2

γ
(d)
1j (1{X(d)

1k =j})

+ γ
(d)
2 X

(d)
2k +

5∑
k=2

γ
(d)
3j (1{X(d)

3k =j}) + εk (10)

and

yk = δ1X
(c)
2k + δ2(X

(c)
2k )2(1− 1{X(d)

3k =2}∪{X(d)
3k =3}) + log(1 + δ3X

(c)
2k )(1{X(d)

3k =2}∪{X(d)
3k =3}) + εk, (11)

where ε ∼N(0, σ2ε). Note that the model (10) is linear in the coe�cients, whereas Model (11) cor-
responds to a nonlinear relationship between the response variable and the predictors. The values
of the model parameters are displayed in Table [?]. For the linear model we used both an non-
informative sampling design and an informative sampling design with a correlation between the
y-variable and the design weights dk equal to ? ? ?. For the non-informative sampling design, the
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vector of coe�cients
(
β0, β

(s), β
(c)
1 , β

(c)
2 , β

(c)
3 , β

(d)
12 , β

(d)
13 , β

(d)
14 , β

(d)
15 , β

(d)
22 , β

(d)
32 , β

(d)
33 , β

(d)
34 , β

(d)
35

)
was set

to (−0.2, 5.0, 5.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5) . For the informative sampling design,
this vector was set to (−10, 5.0, 5.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5) . Finally, for the non-
linear model, the vector of coe�cients (δ0, δ1, δ2, δ3) was set to (4, 4, 4, 4) . This led to six di�erent
�nite populations.

Each population was partitioned into ten strata on the basis of the auxiliary variable X(s)

using an equal quantile method. From each population, we selected B = 1, 000 samples according
to strati�ed simple random sampling without replacement of size n = 1, 000 based on Neyman's
allocation.

In each sample, nonresponse the survey variable Y was generated according to six nonresponse
mechanisms. For each k ∈ S, we assigned a response probability pk according to the following
six functions :

1. p(1)k = logit−1(−0.8 − 0.05X
(s)
1k + 0.2X

(c)
1k + 0.5X

(c)
2k − 0.05X

(c)
3k +

∑5
k=2 0.2(1{X(c)

1k =k}) +

0.2X
(d)
2k +

∑5
k=2 0.3(1{X(d)

3k =k})).

2. p(2)k = 0.1+0.9 logit−1(0.5+0.3X
(s)
1k −1.1X

(c)
1k −1.1X

(c)
2k −1.1X

(c)
3k +

∑5
k=2 0.8(1{X(c)

1k =k})+

0.8X
(d)
2k +

∑5
k=2 0.8(1{X(d)

3k =k})).

3. p(3)k = 0.1 + 0.9 logit−1
(
−1 + sgn (Xc

1k) (Xc
1k)

2 + 3× 1{
X

(d)
1k <4

}
∩
{
X

(d)
2k =1

}).
4. p(4)k = 0.55 + 0.45 tanh (0.05yk − 0.5).

5. p(5)k = 0.1 + 0.9 logit−1 (0.2yk − 1.2).

6. p(6)k = 0.1 + 0.6 logit−1(0.85X
(s)
1k + 0.85X

(c)
2k −0.85X

(c)
3k −

∑5
k=2 0.2(1{X(c)

1k =k}) + 0.2X
(d)
2k −∑5

k=2 0.3(1{X(d)
3k =k})).

The parameters in each nonresponse model were set so as to obtain a response rate approximately
equal to 50%. The response indicators R(j)

k were generated from a Bernoulli distribution with

probability p(j)k , j = 1, . . . , 6.. Note that the nonresponse mechanism (1)-(3) and (6) are ignorable,
whereas the nonresponse mechanism (4) and (5) are nonignorable.

Figure 1 � Distribution of response probabilities in the population U

Since we used six survey variables and six nonresponse mechanisms, we ended up with 36
scenarios, each scenario corresponding to a given survey variable and a given nonresponse me-
chanism.
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To estimate the response probabilities pk, we used the following procedures using X(s), X(c)
1 ,

X
(c)
2 , X(c)

2 , X(d)
1 , X(d)

2 and X(d)
3 as the set of explanatory variables :

(a) Logistic regression ;
� logit.

(b) Logistic regression with variable selection based on LASSO ; e.g., see [Hastie et al., 2001].
� logit_lasso : the amont of penalization λ is obtained using a 10-fold cross validation.

(c) Classi�cation and regression trees ; e.g, see [Breiman et al., 1983].
� cart1 : Pruned trees, at least 10 observations in each leaf.
� cart2 : Pruned trees, at least 20 observations in each leaf.
� cart3 : Pruned trees, at least 30 observations in each leaf.
� cart4 : Unpruned trees, at least 20 observations in each leaf.

(d) Random forests ; e.g., see [Breiman, 2004].
� rf1 : Probabilities estimation trees, at least 10 observations in each leaf, 100 trees.
� rf2 : Probabilities estimation trees, at least 10 observations in each leaf, 500 trees.
� rf3 : Probabilities estimation trees, at least 30 observations in each leaf, 100 trees.
� rf4 : Probabilities estimation trees, at least 30 observations in each leaf, 500 trees.
� rf5 : Probabilities estimation trees, at least 30 observations in each leaf, 500 trees,

variable used for the allocation is always drawn.
(e) k-nearest neighbors ;

� knn : k determined by 10-fold cross validation with k ∈ {3, 12}.
� knn_reg : k determined by 10-fold cross validation with k ∈ {3, 30}.

(f) Bayesian additive regression tree ; e.g., [Chipman et al., 2010].
� : bart Bart as a classi�cation method with parameters described in the original paper

for all priors.
� : bart_reg : Bart as a regression method with parameters described in the original

paper for all priors.
(g) Extreme Gradient Boosting (XGBoost) ; see [Chen and Guestrin, 2016].

� xb1 : 500 trees, Γ = 10, proportion for subsets : 75 %, learning rate : 0.5, max depth :
2.

� xgb2 : 2000 trees, Γ = 2, proportion for subsets : 100 %, learning rate : 0.5, max
depth : 2.

� xgb3 : 1000 trees, Γ = 2, proportion for subsets : 75 %, learning rate : 0.01, max
depth : 1.

� xgb4 : 500 trees, Γ = 10, proportion for subsets : 75 %, learning rate : 0.05, max
depth : 3.

(h) Support vector machine ;
� svm1 : ν−SVM with a Gaussian kernel, ν = 0.7, γ = 0.025.
� svm2 : ν−SVM with a linear kernel, ν = 0.7.

(i) Cubist algorithm ; [Quinlan, 1992] [Quinlan, 1993].
� cb1 : Unbiaised, 100 rules, with extrapolation, 10 commitees.
� cb2 : Unbiaised, 100 rules, without extrapolation, 10 commitees.
� cb3 : Biaised, 100 rules, with extrapolation, 10 commitees.
� cb4 : Unbiaised, 100 rules, with extrapolation, 50 commitees.
� cb5 : Unbiaised, 100 rules, with extrapolation, 100 commitees.

(j) Model-based recursive partitioning ; [Zeileis et al., 2008].
� mob : logit model �tted, X(s) for strati�cation.

(k) Ensemble method based on calibration ; see Section 3 ;
(l) Ensemble method based on re�tting ; see Section 3 ;
(m) Ensemble method based on calibration followed by re�tting ; see Section 3.

In each sample, we computed two estimators : (i) the propensity score adjusted estimator, t̂y,PSA
given by (5) and (ii) The Hajek estimator, t̂y,H given by (6).
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As a measure of bias of an estimator t̂y, we computed its Monte Carlo percent relative bias :

BMC(t̂y) =
100

B

B∑
k=1

(
t̂y,k − ty

)
ty

. (12)

We also computed the Monte Carlo relative e�ciency, using the complete data estimator t̂y,π :

REMC(t̂y) = 100× MSEMC(t̂y)

MSEMC(t̂y,π)
, (13)

where

MSEMC(t̂y) =
1

B

B∑
k=1

(
t̂y,k − ty

)2
(14)

and MSEMC(t̂y,π) is de�ned similarly.

4.2 Results

4.2.1 Comparison of machine learning methods

In this section, the e�ciency of the PSA estimator and the Hàjek estimator will be studied.
For each algorithm of machine learning, an estimate of the e�ciency of the estimators is available
for 42 con�gurations (6 non-response mechanisms and 7 general scenarios).

Algorithm Min Q1 Med Q3 Max Mean
xgb1 155 225 324 1 124 12 551 1 677

COMPRESS_CAL 139 208 328 798 7 772 908
xgb4 148 221 330 1 139 12 111 1 589
xgb3 143 239 344 928 11 581 1 394
cart3 175 259 345 1 506 9 627 1 393
cart2 175 256 348 1 464 9 472 1 376

COMPRESS 137 199 348 906 10 382 1 317
CART_reg 162 269 350 1 367 9 522 1 293

cart1 172 259 351 1 448 9 373 1 370
xgb2 148 215 368 1 016 11 479 1 405
cart4 145 262 369 1 382 8 881 1 231
bart 129 199 384 852 10 595 1 314
knn 172 282 392 921 11 513 1 621

logit and score 134 216 392 1 252 9 998 1 359
svm1 129 280 407 780 12 482 1 639

knn_reg 144 261 413 1 020 12 398 1 745
rf4 188 235 417 1 133 9 341 1 413
cb4 197 263 456 1 592 16 376 1 948
cb5 199 267 466 2 406 17 395 2 249

calibration 222 318 472 875 7 475 1 031
rf2 199 278 487 1 470 9 717 1 482
rf5 200 269 508 2 847 25 181 2 408
rf3 192 264 522 1 419 9 215 1 488
cb1 194 270 524 1 814 14 125 2 002

bart_reg 143 208 571 2 479 * *
cb2 181 241 598 3 239 23 578 3 385

logit_lasso 141 331 636 1 739 15 895 2 520
rf_reg 225 343 821 1 989 19 596 2 203
logit 123 215 962 5 786 * 84 503
rf1 228 345 1 147 2 152 10 973 2 208
mob 121 833 10 846 106 423 * *
cb3 304 53 745 890 538 * * *
svm2 297 32 212 * * * *

Algorithm Min Q1 Med Q3 Max Mean
xgb1 171 220 295 1 751 12 305 1 864

COMPRESS 158 196 296 1 470 10 144 1 443
xgb4 170 219 296 1 741 11 783 1 778
bart 159 202 306 1 417 10 201 1 457
xgb3 147 201 307 1 508 10 815 1 560

logit and score 135 217 308 1 267 9 984 1 377
xgb2 148 206 315 1 520 10 817 1 567

COMPRESS_CAL 139 208 328 798 7 772 908
CART_reg 163 252 344 1 733 9 515 1 382

cb4 165 224 345 1 389 12 223 1 675
cb5 163 224 346 1 398 12 255 1 680
cart4 145 229 362 1 413 8 879 1 255
cb1 182 228 363 1 365 12 281 1 680
cb2 138 211 419 1 291 10 922 1 367
cart1 173 248 421 1 807 9 369 1 485
cart2 174 240 422 1 807 9 472 1 487
cart3 174 243 430 1 844 9 627 1 510
rf4 156 195 437 1 555 9 721 1 406
knn 198 253 449 2 219 10 875 1 826

calibration 222 318 472 875 7 475 1 031
rf2 156 202 477 1 512 9 397 1 348

knn_reg 187 251 485 2 352 11 932 1 998
rf3 159 198 489 1 529 9 607 1 401
rf5 153 202 493 1 275 9 890 1 327
svm1 187 279 516 2 691 12 231 2 069
rf_reg 151 212 547 1 458 9 159 1 345
rf1 150 219 572 1 598 9 149 1 382
logit 123 218 671 2 202 27 493 2 770

logit_lasso 193 305 679 2 759 15 670 2 833
bart_reg 173 217 1 401 5 545 * *
svm2 237 452 1 491 3 723 23 959 3 966
cb3 223 1 605 3 246 8 241 60 590 7 404
mob 122 976 8 259 374 131 * *

Table 3 � Relative Monte-Carlo e�ciency for PSA estimator (left) and Hàjek estimator
(right).
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Algorithm Min Q1 Med Q3 Max Mean
xgb1 15 9 1 10 21 19

COMPRESS_CAL 7 4 2 2 2 1
xgb4 13 8 3 12 18 16
xgb3 9 11 4 7 17 11
cart3 19 14 5 20 9 10
cart2 20 13 6 18 7 9

COMPRESS 6 1 7 5 12 6
CART_reg 16 21 8 14 8 4

cart1 18 15 9 17 6 8
xgb2 14 6 10 8 15 12
cart4 12 17 11 15 3 3
bart 3 2 12 3 13 5
knn 17 26 13 6 16 17

logit and score 5 7 14 13 11 7
svm1 4 25 15 1 20 18

knn_reg 11 16 16 9 19 20
rf4 22 10 17 11 5 13
cb4 25 18 18 21 24 21
cb5 26 20 19 26 25 25

calibration 29 27 20 4 1 2
rf2 27 24 21 19 10 14
rf5 28 22 22 28 28 26
rf3 23 19 23 16 4 15
cb1 24 23 24 23 22 22

bart_reg 10 3 25 27 33 33
cb2 21 12 26 29 27 28

logit_lasso 8 28 27 22 23 27
rf_reg 30 29 28 24 26 23
logit 2 5 29 30 33 29
rf1 31 30 30 25 14 24
mob 1 31 31 31 33 33
cb3 33 33 32 33 33 33
svm2 32 32 33 33 33 33

Algorithm Min Q1 Med Q3 Max Mean
xgb1 21 17 1 21 27 25

COMPRESS 14 2 2 12 15 13
xgb4 20 15 3 20 21 23
bart 16 5 4 10 16 14
xgb3 7 4 5 13 17 18

logit and score 3 12 6 3 14 8
xgb2 8 8 7 15 18 19

COMPRESS_CAL 5 9 8 1 2 1
CART_reg 17 26 9 19 9 9

cb4 19 18 10 7 23 20
cb5 18 19 11 8 25 21
cart4 6 21 12 9 3 3
cb1 26 20 13 6 26 22
cb2 4 10 14 5 20 7
cart1 23 24 15 22 6 15
cart2 25 22 16 23 8 16
cart3 24 23 17 24 11 17
rf4 13 1 18 17 12 12
knn 30 27 19 26 19 24

calibration 31 30 20 2 1 2
rf2 12 6 21 14 7 6

knn_reg 28 25 22 27 22 26
rf3 15 3 23 16 10 11
rf5 11 7 24 4 13 4
svm1 27 28 25 28 24 27
rf_reg 10 11 26 11 5 5
rf1 9 16 27 18 4 10
logit 2 14 28 25 30 28

logit_lasso 29 29 29 29 28 29
bart_reg 22 13 30 31 33 33
svm2 33 31 31 30 29 30
cb3 32 33 32 32 31 31
mob 1 32 33 33 33 33

Table 2 � Rank e�ciency of PSA estimator (left) and Hàjek estimator (right).
The case (cb3, Min) = 32 means that cb3 has the 32th better minimum e�ciency.
The minimum e�ciency for an algorithm is the minimum MSE we get among all the
simulations done with this algorithm. We de�ne in the same way the �rst quartile e�ciency
(Q1), the median e�ciency (Med), the third quartile e�ciency (Q3), the max e�ciency
(Max) and the mean e�ciency (Mean).

The case (xgb4,Med) = 397 means that the median of all the relative Monte-Carlo e�-
ciencies (as de�ned in equation 13) using xgb4 as algorithm.

4.3 Comparaison of bias and e�ciency for a speci�c scenario

In this section, the results of the simulations for one particular scenario are examined. The
scenario corresponds to a linear y variable with dependent x variables and an informative design.

For each of the six nonresponse mechanisms, each method is represented with a point : on
the x-axis, the absolute value of the relative bias is described and on the y-axis, the relative
e�ciency.

The red triangle corresponds to the calibration method, the red circle to the COMPRESS
method and the blue square to the COMPRESS + calibration method.

Each method is described using two points : a blue point based on the PSA estimator without
the score method and a red point using the PSA estimator with the 10-class score method.

By seeing this graph, it comes that the Xgboost methods allow to obtain more e�cient results
in several cases. However, there are strong biases in some situations.

The last two graphs correspond to MAR mechanisms : the calibration method allows to
obtain an e�ciency similar to the other methods but with a lower bias.
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5 Discussion
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6 Annexes

6.1 Algorithm used

Label Algorithm Continuous or discrete variable Hyperparameters
bart BART Discrete

bart_reg BART Continue
CART_reg CART Continuous Min number of observations in each leaf : 20

cart1 CART pruned Discrete Min number of observations in each leaf : 10
cart2 CART pruned Discrete Min number of observations in each leaf : 20
cart3 CART pruned Discrete Min number of observations in each leaf : 30
cart4 CART non pruned Discrete Min number of observations in each leaf : 20

cb1 Cubist Continuous
Not biased

10 agregated models
With extrapolation

cb2 Cubist Continuous
Biased

10 agregated models
Without extrapolation

cb3 Cubist Continuous
Biased

10 agregated models
With extrapolation

knn k-nearest neighbours Discrete
knn_reg k-nearest neighbours Discrete
logit Logistic regression Discrete

logit_lasso Lasso logistic regression Discreate Lambda : obtained using 10-fold cross-validation
mob Model-Based Recursive Partitioning Discrete Variable used for the strati�cation : X(x)

rf_reg Random forests Continue
Min number of observations in each leaf : 20

Nombre d'arbres aggregÃ©s : 200

rf1 Random forests Discrete (Probabilities estimation trees)
Min number of observations in each leaf : 10

Number of trees : 100

rf2 Random forests Discrete (Probabilities estimation trees)
Min number of observations in each leaf : 10

Number of trees : 500

rf3 Random forests Discrete (Probabilities estimation trees)
Min number of observations in each leaf : 30

Number of trees : 100

rf4 Random forests Discrete (Probabilities estimation trees)
Min number of observations in each leaf : 30

Number of trees : 500

rf5 Random forests Discrete (Probabilities estimation trees)
Min number of observations in each leaf : 30

Number of trees : 5E00

svm1
SVM with RBF kernel

Platt method to get probabilities
Discrete

Gamma : 0.025
nu : 0.7

svm2 SVM with polynomial kernel Discreate
Gamma : 0.0001

nu = 0.7
DegrÃ© = 1

xgb1 XGBoost Continue

Number of trees : 500
Gamma : 10

Proportion for subset : 75%
Learning rate : 0.05
Max deepth : 2

xgb2 XGBoost Continue

Number of trees : 2000
Gamma : 2

Proportion for subset : 100%
Learning rate : 0.5
Max deepth : 2

xgb3 XGBoost Continue

Number of trees : 1000
Gamma : 1

Proportion for subset : 75%
Learning rate : 0.01
Max deepth : 1

xgb4 XGBoost Continue

Number of trees : 500
Gamma : 10

Proportion for subset : 75%
Learning rate : 0.05
Max deepth : 3

Table 4 � Labels and hyperparameters for each algorithm
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6.2 E�ciency of aggregation methods and number of methods

aggregated
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Non informative
y linear

β0 β(s) β
(c)
1 β

(c)
2 β

(c)
3 β

(d)
12 β

(d)
13 β

(d)
14 β

(d)
15 β

(d)
22 β

(d)
32 β

(d)
34 β

(d)
35 β

(d)
33

0.5 -0.2 5.0 5.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Informative
y linear

β0 β(s) β
(c)
1 β

(c)
2 β

(c)
3 β

(d)
12 β

(d)
13 β

(d)
14 β

(d)
15 β

(d)
22 β

(d)
32 β

(d)
34 β

(d)
35 β

(d)
33

0.5 -10 5.0 5.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Non informative
y non linear

δ0 δ1 δ2 δ3
4 4 4 4

Table 5 � Coe�cients for each y-generator process.
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