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Résumé

Ces derniéres années, 'apprentissage automatique a suscité un intérét considérable dans les
offices nationaux de statistique. Grace a leur flexibilité, ces méthodes peuvent s’avérer utiles au
stade du traitement de la non-réponse totale. Dans cet article, nous menons une étude par simu-
lation afin de comparer plusieurs procédures d’apprentissage automatique en termes de biais et
d’efficacité. En plus des approches classiques d’apprentissage automatique, nous évaluons la per-
formance de certaines approches d’aggrégation qui utilisent difféntes procédures d’apprentissage
automatique pour produire un ensemble de poids ajusté pour la non-réponse.

Abstract

In recent years, there has been a significant interest in machine learning in national statistical
offices. Thanks to their flexibility, these methods may prove useful at the nonresponse treatment
stage. In this article, we conduct an empirical investigation in order to compare several machine
learning procedures in terms of bias and efficiency. In addition to the classical machine learning
procedure, we assess the performance of ensemble approaches that make use of different machine
learning procedures to produce a set of weights adjusted for nonresponse.

Introduction

Most surveys conducted by national statistical offices collect information on many survey
variables and the aim is to estimate many population parameters : such surveys are often referred
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to as multipurpose surveys. Response rates have been declining over time. Thus, there is an
increased concern for the potential of nonresponse bias. Unit nonresponse, which is characterized
by the absence of information for all the survey variables, is usually treated by some form of
weight adjustment procedure. The main idea behind a weighting adjustment consists of inflating
the weight of the respondents to compensate for the nonrespondents. The inflation factor is
defined as the inverse of the estimated response probability to the survey. The treatment of unit
nonresponse starts with postulating a nonresponse model describing the relationship between
the response indicators (equal to 1 for respondents and 0 for nonrespondents) and a vector
of explanatory variables. Determining a suitable model is thus crucial. This modeling exercise
consists of two steps : (i) select a vector of explanatory variables that are predictive of the
response indicators and that are related to the survey variables; (ii) Determine a suitable model
for the relationship between the response indicator and the selected explanatory variables; see
Haziza and Beaumont (2017).

In recent years, there has been a substantial interest in machine learning methods in na-
tional statistical offices. Machine learning procedures provide flexible approaches able to adapt
to complex non-linear and non-additive relationships between a response variable and a set of
predictors and may prove useful in the context of big data sets. Although these procedures can
prove useful in the context of unit nonresponse, one should exercise some caution. Indeed, many
machine learning procedures are known to have very good predictive performances. However,
in the context of unit nonresponse, one face an estimation problem rather than a prediction
problem. Our goal is to estimate a finite population parameter (e.g., a population total) and
the most predictive nonresponse model may not necessarily lead to the best estimator (in terms
of mean square error) of a population total. This will be illustrated in Section 3. Our problem
here is different from what is encountered in the context of imputation for imputing item non-
response. In that context, the most predictive model is expected to perform well in terms of bias
and efficiency.

In this paper, we conduct an extensive simulation study to compare several machine learning
procedures in terms of bias and efficiency. Other empirical investigation on the use of machine
learning in the context of unit nonresponse is surveys can be found in Lohr et al. (2015), Gelein
(2017) and Kern et al. (2019).

1 The setup

Consider a finite population U of size N; i.e., = {1,...,k,...,N}. In this paper, the
aim is to estimate the population total of a survey variable y, t, := >, o yx- To that end,
we select a sample S, of size n, according to a sampling design, P(S | Z), with first-order
inclusion probabilities 7, k € U, where Z denotes the matrix of design information. In the
absence of nonsampling errors, a design-unbiased estimator of t, is the well known Narain—
Horvitz—Thompson estimator

%\yw = Z dkyk7 (1)

kes

where dy, = 1/7;, denotes the design weight attached to unit k.

In the presence of unit nonresponse, the survey variable y is collected for a subset &, C §.
Let Ry be a response indicator attached to unit k such that R = 1 if unit k responds to the
survey and R; = 0, otherwise. Let p, denote the response probability associated with unit k.
In our empirical study, we make the following assumptions : (i) The response indicators Ry are
mutually independent ; (ii) The response indicators Rx are independent from the sample selection
indicators I, where I, = 1 if £k € & and I = 0, otherwise. This assumption implies that the
response probability of a unit y is essentially determined by fixed respondent characteristics.
This assumption may be violated in the context of adaptative collection designs (e.g., Groves
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and Heeringa, 2006). (iii) the positivity assumption is satisfied ; i.e., mp > 0 for all k and pg > 0
for all k.
A naive estimator of ¢, is given by

~ drR
ty naive = NM
Zkecs“ di Ry,

Alternatively, the population size N in may be replaced by the estimated population size
Ny = > kes di- Unless the data are Missing Completely At Random (MCAR), the estimator
tAy,mive is biased. The bias may be significant if the nonresponse rate is high and /or the responding
units and the nonresponding units exhibit a different behavior with respect ot the survey variable
Y.

(2)

If the response probabilities p;, were known, a design-unbiased estimator of ¢, is the so-called
double expansion estimator (Sarndal et al., 1992) :

fypp =Y diRy2x. (3)
kes Pk

In practice, the pg’s are unknown and are replaced by estimated response probabilities pg. Tt
is common practice to postulate a nonresponse model, which is a set of assumptions about the
unknown nonresponse mechanism. More specifically, we postulate the following model :

E(Ry | yr, xx) = m(xz), (4)

where m(-) is either a predetermined function in the case of a parametric model or is left unspe-
cified in the case of a nonparametric model, and xj, is a vector of fully observed variables (i.e.,
available for both the responding and the nonresponding units). The resulting estimator, often
referred to as the propensity score adjusted estimator, is given by

-~ k
fypsa =Y dRyx. (5)
keS Pk

An alternative estimator of ¢, is the Hajek estimator

=2y g (6)

kGoS’

Although both tAy psa and tAy g exhibit the same asymptotic bias, they may differ significantly
from one another in terms of variance. If the nonresponse model (4] is correctly specified, both
ty psa and t .u will be nearly unbiased. The weights adjusted for nonresponse are defined as

wy = dy, /D

2 Estimation vs. prediction

In this section, we illustrate empirically that the best predictive model does not necessarily
yield the best estimator of ¢, in terms of mean square error. Indeed, including predictors that are
highly predictive of Ry may lead to very small estimated response probabilities pj, which may
result in extreme adjusted weights wy . In this case, both and @ may be inefficient. How then
to choose the xj, variables to incorporate in the model 7 A common recommendation is to include
the variables xj, that are related to both the indicator variable Rj and the variable of interest v ;
e.g., Little and Vartivarian (2005), Beaumont (2005). Indeed, if an x-variable is strongly related
to Ry but not to the survey variable y, it is not desirable to include it in the nonresponse model,
since it will not help reduce the nonresponse bias but may contribute to increasing the variance
of the point estimator.
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As an illustration, we generated a finite population of size N = 10,000 with seven variables :
one survey variable y and six auxiliary variables x; to xg. We first generated the z-variables accor-
ding to the following distributions : z1 ~ Gamma(5,1); o ~ Gamma(l,5); 3 ~ Gamma(l,6);
x4 ~ Gamma(l,10); x5 ~ Gamma(l,20); z¢ ~ Gamma(0.5,50). Given xi-z¢, we generated a
y-variable according to the linear model

Yk = 2 — 2z + 4oy + €,

where the errors € were generated from a normal distribution of mean equal to zero and variance
equal to 1.

From the population, we drew 10, 000 samples, of size n = 1,000, according to simple random
design without replacement. In each sample, each unit was assigned a response probability pg
using the logistic function :

pe = 0.05 4 0.95 {1 + exp (—0.0521), + 0.0529; — 0.0523), + 0.05245, — 0.05z5; + 0.0226)} L.

This led to a response rate of about 50% in each sample. In each sample, the indicator variables
Ry were generated according to a Bernoulli distribution with probability pg. Our goal is to
estimate the population total, ¢, = >,y yx. In our experiment, the variables z1-z¢ are fully
observed and only the y-variable is prone to missing values.
In each sample, we computed two estimators of ¢,
(i) The naive estimator given by (2).
(ii) The propensity score-adjusted estimator, %\% psA given by , where P, was obtained
using the score method (described below) based on different subsets of the variables
T1-T6.
The score method(Little, 1986, Eltinge and Yansaneh, 1997 ; Haziza and Beaumont, 2007) may
described as follows :
— Step 1 : Obtain preliminary estimated response probabilities, ﬁﬁR, k € S, from a logistic
regression.
— Step 2 : Form 20 classes based on the estimated response probabilities, ﬁﬁR, using either
an equal quantile method.
— Step 3 : Perform weight adjustment within each class (i.e, divide the design weight dj, of
the kth respondents in a given class by the response rate observed within the same class).
We computed the Monte Carlo percent relative bias of each estimator

10,000

~ 1 (t(b) t )
RBc(t) = 10,000 bz; X 100,

as well as the Monte Carlo mean square error

10,0
MSEwc(?) ~ 10,000 000 Z

where tA(b) denotes the ¢ estimator in the b-th sample, b = 1,...,10000. To ease readability, we
computed the relative efficiency of the point estimators, defined as

N MSEy ()
REye(d) = 100 x —19Emc(t)
MSE]WC (tyjﬂ)

where fym is the complete data estimator given by . In addition, in each sample, we computed
the Monte Carlo percent coefficient of variation of the adjusted weights wj defined as

100 §= 50

B b=1 W(kb)

CVye =
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where

1 PR—,
Sw* = Z (wk —w )2

n, — 1
T kesS,

with w* =n; 'Y, cq wi.
Finally, we computed the Monte Carlo mean square error of the predictions defined as

B
100 L 1 2
MSE:FE n—E (ﬁ,‘;—pk) :
b=1 " keS,

The results are displayed in Table

Estimator | tynaie | ty,psa | ty,psa | typsa | typsa | typsa | typsa
Z1 T1-Tg | T1-T3 | T1-T4 | T1-T5 | L1-Tg
RByc -14.1 | -13.0 -1.7 -1.8 -0.7 -1.1 -0.8
in (%)
| REyc | 540 | 480 | 112 | 118 [ 117 [ 149 | 218 |
CV (wx) 0 17.4 19.6 21.7 30.1 46.7 64.2
in (%)
MSE 4.8 5.4 5.3 5.1 4.6 1.7 0.9

TABLE 1 — Monte percent relative bias and mean square error of several estimator of ¢,

The results in the table [l can be summarized as follows :

As expected, the naive estimator was biased with a relative bias of -14.1%. This result
is not surprising because the naive estimator does not take into account the variables z;
and xo which are related to both Ry and y.

The propensity score estimator tAy7 psa based on the variable x1 exhibited a smaller bias
than the unadjusted estimator, which can be explained by the fact that it incorporates
the variable x; which is related to both the probability of response and the variable of
interest y. The bias is explained by the fact that the variable zs was not included.

The propensity score estimator tA% psa based on the variable x1 and x9 was nearly unbiased
bias because it included both z1 and x9 in the nonresponse model. In terms of relative
efficiency, this estimator was the best with a value of RE equal 112. It is worth noting
that the other propensity score estimators were nearly unbiased but were less efficient
than %\%IDSA based on z; and x3. In other words, incorporating x3 to xg into the model
contributed in increasing the variance.

The most predictive model of Ry included all the z-variables x1-zg. However, except for
?%PSA, based on 1, the propensity score estimators based on zi-z¢ was the worst in
terms of relative efficiency with a value of RE equal to 218. In comparison with tAy7 PSA»
based on x1 and x5, this corresponds to a significant increase of 194%. This result shows
that the most predictive model does not necessarily translate into the best estimator of
the total t,. This is supported by the values of the mean square of the predictions : 5.4
for tAyJDSA based on z; and x2 and only 0.9 for for /t\y7pSA based on z1-x¢.

A large dispersion of the adjusted weights wj led to estimators with a large variance.
This is why, in practice, it is desirable to limit the dispersion of weights.

3 Ensemble methods

In addition to commonly encountered machine learning procedures (see Section 4.7), we
tested the performance of three ensemble methods. The rationale behind an ensemble method is
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to obtain estimated response probability using several (machine learning or non machine learning)
procedures and combining these probabilities in some way to obtain a set of weights adjusted for
nonresponse. Why use an ensemble method 7 As we illustrate in Section 4, there is no machine
learning procedures that outperforms all the other competitors in all the scenarios. Indeed, a
machine learning procedures may do well in a particular scenario but not as well in another
scenario. However, one cannot tell in advance which procedure will perform well. An ensemble
method that combines several machine learning procedures, may outperform a single procedure,
which is an attractive feature.

Below, we describe three methods for combining the machine learning procedures : the first
is based on a calibration procedure similar to a model calibration procedure (Wu and Sitter,
2001) ; the second is based on refitting (Duan and Yin, 2017, Chen and Haziza, 2019) ; The third
uses both refitting and calibration.

Let pp = (ﬁ;), - ,ﬁ;CM)) be a M-vector of estimated response probabilities associated with
unit k. The component ]’)(km) in py corresponds to an estimated response probability based on

the mth machine learning procedure, m =1,..., M.
The three ensemble methods are described below.
(1) Calibration Combining through calibration proceeds as follows : we seek calibrated weight
wy, such that

T G (wy, dy.) (7)

kes, I
subject to

> we=) d

keS: keS
and

> w2 (Br) = Y deZ(Br),

keS, keS

where Z(-) is the inverse of the calibration function F'(-). The resulting weights wy, may
be viewed as a scalar summary of the information contained in the M-vector pg. The
resulting estimator of ¢, is given by

%al = Zkakyk-
kes

(2) Refitting Refitting consists of compressing the information contained in py by fitting a
linear regression model with the response indicator Ry as the dependent variable and py
as the vector of explanatory variables :

M
Ry=Y ™5™ + ey (8)

m=1

Let B = (3(1), . ,B(M))T be the least squares estimator of 8 = (8, ..., BT We

define the 3 := (B,...,5M) = ﬁ((ﬁl)%,(ém)z) where < .,. > denotes the

customary dot product in R™. Note that this standardization ensures that ,é c [0;1]M
M

and ZBJ = 1. The vector of compressed scores pi°™ is defined as pi™ =< B,pr >.
j=1

Because of the standardization, the components, the compressed score pj°™ lies between

0 and 1. An estimator of ¢, through refitting is given by

ne - Yk
tom = Z dkRk@mm.
kes k
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~com

(3) Refitting followed by calibration We start by obtaining the compressed scores pf
above. Then, we seek calibrated weights wy, such that

Z G(wk,dk) (9)

kes, Ik
subject to
> we=)
keSy keS
and

Z wkg »comp deg »comp )
keS, kesS

Unlike in (1) where there are M + 1 calibration constraints, we only have two calibration
constraints when calibration is performed after refitting. The resulting estimator of ¢, is given

by
’hom cal Z kakyk
kes

4 Simulation study

We conducted an extensive simulation study to assess the performance of several machine
learning procedures (see Section 4.2) in terms of bias and efficiency.

4.1 Setup

We generated several finite populations of size N = 50,000. Each population consisted of a
survey variable Y and 6 auxiliary variables drawn independently, three of which were continuous
and the remaining being discrete. First, the continuous auxiliary variables were generated as
follows : X(*) ~ Gamma(3,2), X(©) ~ #(0,1); X(©2) ~ Gamma(3,2) and X () ~ Gamma(3,2).
The discrete auxiliary variables were generated as follows : X (41) ~ MN(N,0.5,0.05,0.05,0.1,0.3);
X(42) ~ Ber(0.5) and X (%) ~ UD(1;5). We used two configurations for these predictors : (i) They
were independently generated ; (ii) Correlation between them was introduced through Gaussian
copulas.

Given the values of the auxiliary variables, we have generated several y-variables according
to the following models :

Y = Yo + ’)/is)sz) + ’Y%C)X&c) + '}/é )X2(2) + ’Yg 3k + Z’Yl] X(d) )

5
+ ’Yéd)XéZ) + Z ")/?(’?)(I{ng):j}) -+ Ek (10)
k=2 )

and

e = 61 X5 4 5,(XSD)2(1 -1 )+log(1 + 63 X59) (1 )+er, (11)

(XD —gyu{x{P =3} (XD —gyu{x{P=3}

where ¢ ~ 4 (0,02). Note that the model ((10)) is linear in the coefficients, whereas Model (11] . cor-
responds to a nonlinear relationship between the response variable and the predictors. The values
of the model parameters are displayed in Table [?]. For the linear model we used both an non-
informative sampling design and an informative sampling design with a correlation between the
y-variable and the design weights dj equal to 7?7 ?7. For the non-informative sampling design, the
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vector of coefficients (ﬂo,ﬁ(s),6§6),/8§c), ﬂ12 ,ﬁ13 ,BM , 15 , gg), ég), 33 , 34 ,ﬂ35 ) was set

0 (—0.2,5.0,5.0,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5) . For the informative sampling design,
this vector was set to (—10,5.0,5.0,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5) . Finally, for the non-
linear model, the vector of coefficients (0o, d1, 02, 03) was set to (4,4,4,4) . This led to six different
finite populations.

Each population was partitioned into ten strata on the basis of the auxiliary variable X (s)
using an equal quantile method. From each population, we selected B = 1,000 samples according
to stratified simple random sampling without replacement of size n = 1,000 based on Neyman’s
allocation.

In each sample, nonresponse the survey variable Y was generated according to six nonresponse
mechanisms. For each k € &, we assigned a response probability pix according to the following
six functions :

1. pY = logit™!(~0.8 — 0.05X + 02X + 0.5x() — 0.05x\Y +37_,0.21
0.2X5) + 320, 0.3(1

oxig=m)
{X(d)_k}))'
2. p!? = 0.1+0.9logit™(0.5+0.3X % —1.1x —1.1x —1.1x9 433 0.8(1

08X5) + 5700, 08(1 g0y ).

{X(C) k})

3. pl(f’) = 0.1+ 0.9logit™* <—1 +sgn (X¢,) (X5,)° + 3 x 1{X§Z)<4}W{X§Z)1}>'

4. p{¥ = 0.55 + 0.45 tanh (0.05y, — 0.5).

5. p®) = 0.1+ 0.91ogit ™" (0.2y), — 1.2).

6. p\®) = 0.140.61ogit (085X +0.85x” —0.85x.7 — 5% 0.2(1 (x©O_g)) 0. 2x P —
Zk:Q 03( {Xgi):k}))

The parameters in each nonresponse model were set so as to obtain a response rate approximately

(4)

equal to 50%. The response indicators R}/’ were generated from a Bernoulli distribution with

probability pé ), j=1,...,6.. Note that the nonresponse mechanism (1)-(3) and (6) are ignorable,

whereas the nonresponse mechanism (4) and (5) are nonignorable.

Frecuency Frequency
0 5000 15000 0 1000 2500
[ R S T

Frequency F requency
] 4000 &000 0 2000 6000
| B I — — | S — —
; ) 8 § [
N -

Frequency F requency
0 2000 4000 0 2000 4000 6000
1 1 11 S -

FIGURE 1 — Distribution of response probabilities in the population %
Since we used six survey variables and six nonresponse mechanisms, we ended up with 36

scenarios, each scenario corresponding to a given survey variable and a given nonresponse me-
chanism.
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To estimate the response probabilities pg, we used the following procedures using X (), X§C),

Xéc)’ X2(c)

, de), Xéd) and Xéd) as the set of explanatory variables :

(a) Logistic regression ;

logit.

(b) Logistic regression with variable selection based on LASSO ; e.g., see [Hastie et al., 2001].

logit_lasso : the amont of penalization A is obtained using a 10-fold cross validation.

(c) Classification and regression trees; e.g, see |[Breiman et al., 1983].

cartl : Pruned trees, at least 10 observations in each leaf.
cart?2 : Pruned trees, at least 20 observations in each leaf.
cart3 : Pruned trees, at least 30 observations in each leaf.
cart4 : Unpruned trees, at least 20 observations in each leaf.

(d) Random forests; e.g., see [Breiman, 2004].

rf1 : Probabilities estimation trees, at least 10 observations in each leaf, 100 trees.
rf2 : Probabilities estimation trees, at least 10 observations in each leaf, 500 trees.
rf3 : Probabilities estimation trees, at least 30 observations in each leaf, 100 trees.
rf4 : Probabilities estimation trees, at least 30 observations in each leaf, 500 trees.
rf5 : Probabilities estimation trees, at least 30 observations in each leaf, 500 trees,
variable used for the allocation is always drawn.

(e) k-nearest neighbors;

knn : k determined by 10-fold cross validation with k € {3,12}.
knn_reg : k determined by 10-fold cross validation with k& € {3,30}.

(f) Bayesian additive regression tree; e.g., [Chipman et al., 2010].

: bart Bart as a classification method with parameters described in the original paper
for all priors.

: bart_reg : Bart as a regression method with parameters described in the original
paper for all priors.

(g) Extreme Gradient Boosting (XGBoost) ; see [Chen and Guestrin, 2016].

xb1 : 500 trees, I' = 10, proportion for subsets : 75 %, learning rate : 0.5, max depth :
2.

xgb2 : 2000 trees, I' = 2, proportion for subsets : 100 %, learning rate : 0.5, max
depth : 2.

xgb3 : 1000 trees, I' = 2, proportion for subsets : 75 %, learning rate : 0.01, max
depth : 1.

xgb4 : 500 trees, I' = 10, proportion for subsets : 75 %, learning rate : 0.05, max
depth : 3.

(h) Support vector machine;

svml : v—SVM with a Gaussian kernel, v = 0.7, v = 0.025.
svm2 : v—SVM with a linear kernel, v = 0.7.

(i) Cubist algorithm ; [Quinlan, 1992] [Quinlan, 1993].

cb1l : Unbiaised, 100 rules, with extrapolation, 10 commitees.
cb2 : Unbiaised, 100 rules, without extrapolation, 10 commitees.
¢b3 : Biaised, 100 rules, with extrapolation, 10 commitees.

cb4 : Unbiaised, 100 rules, with extrapolation, 50 commitees.
¢b5 : Unbiaised, 100 rules, with extrapolation, 100 commitees.

(j) Model-based recursive partitioning ; [Zeileis et al., 2008].

mob : logit model fitted, X for stratification.

(k) Ensemble method based on calibration ; see Section 3;

(1) Ensemble method based on refitting ; see Section 3;

(m) Ensemble method based on calibration followed by refitting ; see Section 3.
In each sample, we computed two estimators : (i) the propensity score adjusted estimator, tAy7 PSA
given by and (ii) The Hajek estimator, ?%H given by @
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As a measure of bias of an estimator ?y, we computed its Monte Carlo percent relative bias :

@B Ayk

= (12)

IB%MCy—
=1

We also computed the Monte Carlo relative efﬁciency, using the complete data estimator ?ymr :

. MSE ;¢ (%,
REc(t,) = 100 x LC(J’) (13)
MSEMC(tyJ)
where
1 5 2
MSE s (f, Z ke — ty) (14)

e
Il
—

and MSE /¢ (ty ) is defined similarly.

4.2 Results

4.2.1 Comparison of machine learning methods

In this section, the efficiency of the PSA estimator and the Hajek estimator will be studied.
For each algorithm of machine learning, an estimate of the efficiency of the estimators is available
for 42 configurations (6 non-response mechanisms and 7 general scenarios).

Algorithm Min | QI | Med | Q3 | Max | Mean Algorithm Min | Q1 | Med | Q3 | Max | Mean
xgbl 155 | 225 | 324 | 1124 |12551| 1677 xgbl 1711 220 | 295 | 1751 ]12305 1864
COMPRESS_CAL | 130 | 208 | 328 798 | 7772 | 908 COMPRESS | 158 | 196 | 296 | 1470 | 10144 |1 443
xgbd 148 | 221 | 330 | 1130 |12 111 | 1589 xgbd 170 | 219 | 296 | 1741 | 11783 | 1778
xgb3 143 | 239 | 344 928 | 11581 | 1394 bart 159 | 202 | 306 | 1417 | 10201 | 1457
cart3 175 | 259 | 345 | 1506 | 9627 | 1393 xgh3 147 | 201 | 307 | 1508 | 10815 | 1560
cart? 175 256 348 1464 9472 | 1376 logit and score 135 217 308 1 267 9984 | 1377
COMPRESS 137 | 199 348 906 | 10 382 | 1317 xgh2 148 | 206 | 315 | 1520 | 10817 | 1567
CART reg 162 269 350 1367 | 9522 | 1293 COMPRESS CAL | 139 | 208 328 798 7772 908
cartl 72 T 259 351 1448 19373 [ 1370 CART reg 163 | 252 | 344 | 1733 | 9515 | 1382
xgh? 148 215 368 1016 | 11 479 | 1 405 cbh4 165 | 224 345 1389 | 12223 | 1675
cartd 145 | 262 369 1382 | 8881 | 1231 cbb 163 | 224 | 346 | 1398 | 12255 | 1680
bart 129 199 384 852 10 595 | 1 314 cartd 145 229 362 1413 8 879 | 1255
knn 172 2892 392 921 11 513 | 1621 cbl 182 228 363 1 365 12 281 | 1 680
logit and score | 134 | 216 392 1252 | 9998 | 1359 b2 138 | 211 | 419 | 1291 | 10922 | 1367
svinl 129 | 280 407 780 | 12 482 | 1639 cartl 173 | 248 | 421 | 1807 | 9369 | 1485
knn_reg 144 | 261 413 1020 | 12398 | 1745 cart2 174 | 240 | 422 | 1807 | 9472 | 1487
vf4 188 | 235 a7 1133 | 9341 | 1413 cart3 174 | 243 | 430 | 1844 | 9627 | 1510
cbd 197 | 263 156 1592 | 16 376 | 1948 1fd 156 | 195 | 437 | 1555 | 9721 | 1406
b5 199 | 267 466 2406 | 17395 | 2 249 knn 198 | 253 | 449 | 2219 | 10875 | 1826
calibration 222 | 318 472 875 7475 | 1031 calibration 222 | 318 | 472 875 7475 | 1031
rf2 199 | 278 487 1470 | 9717 | 1482 rf2 156 | 202 | 477 1512 | 9397 | 1348
rfh 200 | 269 508 2847 | 25181 | 2408 knn_reg 187 | 251 | 485 2352 | 119321998
rf3 192 | 264 522 1419 | 9215 | 1488 1f3 159 | 198 | 489 | 1529 | 9607 | 1401
cbl 194 270 524 1814 14 125 | 2 002 5 153 202 493 19275 9890 | 1327
bart_reg 143 | 208 571 | 2479 * - svml 187 | 279 | 516 | 2691 | 12231 | 2 069
logit_lasso L1 | 331 636 1739 | 15805 | 2520 — 50 T 219 | 52 1 1598 1 9149 | 1382
rf_reg 225 | 343 | 821 | 1989 |19596 | 2203 logit 123 | 218 | 671 | 2202 | 27493 | 2770
logit 123 | 215 | 962 | 5786 T | 84503 Togit_lasso 193 [ 305 | 679 | 2759 | 15670 | 2 833
rfl 28 | 345 | 1147 | 2152 |10 373 2 308 bart _rog 73 T o Tl T 554 . -
TS?E) :1%3}1 ] ;37:1 ] 819008_4368 106*423 : : svmn2 237 | 452 | 1491 | 3723 | 23959 | 3 966
s e . . . b3 223 [ 1605 | 3246 | 8241 | 60 590 | 7 404
mob 122 | 976 | 8259 | 374 131 * *

TABLE 3 — Relative Monte-Carlo efficiency for PSA estimator (left) and Hajek estimator
(right).
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Algorithm Min | Q1 | Med | Q3 | Max | Mean Algorithm Min Q_l Med | Q3 | Max Mof"n
xgbl 519 1 0 21 19 xgbl 21 | 17 1 21 | 27 25
COMPRESS CAL 7 1 2 B} B 1 COMPRESS 14 2 2 12 15 13
xghd = 318 3 2 18 16 xghd 20 | 15 3 20 | 21 23
xgb3 9 |11 1 7 17 11 bart 16 5 4 10 | 16 14
cart3 19 [14] 5 [20] 9 | 10 xgb3 7|45 | 18) 17 | 18
cart? 20 | 13 6 18 7 9 logit and score 3 12 6 3 14 8
COMPRESS 6 | 1] 7 [5] 12 6 xgh2 8 |8 ] 7 |15] 18 | 19
CART _reg 16 |21 8 |14 8 1 COMPRESS_CAL | 5 9 8 1 2 1
cartl I8 15| 9 [17] 6 8 CART _reg 17 126 9 |19 9 9
xgb2 14 6 10 R 15 12 cb4 19 | 18 10 7 23 20
cartd 12 | 17 11 15 3 3 cbb 18 19 11 8 25 21
bart 3 2 12 3 13 5 cart4 6 21 12 9 3 3
knn 17 126 | 13 6 16 17 cbl 26 | 20 | 13 6 26 22
logit and score 5 7 14 |13 | 11 7 ch2 4 10 | 14 5 20 7
svml 4 |25 15 1 20 18 cartl 23 | 24| 15 | 22 6 15
knn_reg 11 |16 | 16 9 19 20 cart2 25 | 22 16 | 23 8 16
rfd 22 |10 | 17 | 11 5 13 cart3 24 123 | 17 | 24| 11 17
chd 25 |18 | 18 |21 | 24 21 rf4 13 1 18 | 17| 12 12
cbb 26 |20 | 19 |26 | 25 25 knn 30 | 27| 19 | 26 | 19 24
calibration 29 27 20 4 1 2 calibration 31 30 20 2 1 2
rf2 27 | 24 21 19 10 14 rf2 12 6 21 14 7 6
tf5 28 | 22| 22 | 28| 28 26 knn_reg 28 [ 25| 22 [ 27| 22 26
rf3 23 |19 | 23 | 16 4 15 3 15 3 23 16 10 11
cbl 24 | 23 24 23 22 22 fh 11 7 24 4 13 4
bart_reg 10 3 25 27 | 33 33 svml 27 | 28 25 28 2 27
ch2 21 | 12| 26 |29 | 27 28 if_reg 0 | 11| 26 | 11 5 5
10git71asso 8 28 27 22 23 27 rfl 9 16 27 18 4 10
f_reg 30 | 29| 28 | 24| 26 23 Togit 2 41 28 1251 30 28
logit 2 |5 129 |30] 33 | 29 Togit_lasso 29 |20 29 | 20| 28 | 29
rfl 31 130 ] 30 | 25| 14 | 24 bart_reg 22 [13] 30 |31 33 | 33
mob 1 |31} 31 |31] 33 | 33 svm2 33 | 31| 31 | 30| 20 | 30
cb3 33 | 33 32 33 33 33 b3 39 33 39 39 31 31
svm2 32 | 32| 33 |33 33 33 mob I 321 33 133 33 33

TABLE 2 — Rank efficiency of PSA estimator (left) and Hajek estimator (right).

The case (cb3, Min) = 32 means that cb3 has the 32" better minimum efficiency.
The minimum efficiency for an algorithm is the minimum MSE we get among all the
simulations done with this algorithm. We define in the same way the first quartile efficiency
(Q1), the median efficiency (Med), the third quartile efficiency (Q3), the max efficiency
(Max) and the mean efficiency (Mean).

The case (xgh4,Med) = 397 means that the median of all the relative Monte-Carlo effi-
ciencies (as defined in equation using xgh4 as algorithm.

4.3 Comparaison of bias and efficiency for a specific scenario

In this section, the results of the simulations for one particular scenario are examined. The
scenario corresponds to a linear y variable with dependent z variables and an informative design.

For each of the six nonresponse mechanisms, each method is represented with a point : on
the x-axis, the absolute value of the relative bias is described and on the y-axis, the relative
efficiency.

The red triangle corresponds to the calibration method, the red circle to the COMPRESS
method and the blue square to the COMPRESS + calibration method.

Each method is described using two points : a blue point based on the PSA estimator without
the score method and a red point using the PSA estimator with the 10-class score method.

By seeing this graph, it comes that the Xgboost methods allow to obtain more efficient results
in several cases. However, there are strong biases in some situations.

The last two graphs correspond to MAR mechanisms : the calibration method allows to
obtain an efficiency similar to the other methods but with a lower bias.
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6 Annexes

6.1 Algorithm used

Label Algorithm Continuous or discrete variable Hyperparameters
bart BART Discrete
bart_reg BART Continue
CART reg CART Continuous Min number of observations in each leaf : 20
cartl CART pruned Discrete Min number of observations in each leaf : 10
cart2 CART pruned Discrete Min number of observations in each leaf : 20
cart3 CART pruned Discrete Min number of observations in each leaf : 30
cart4 CART non pruned Discrete Min number of observations in each leaf : 20
Not biased
cbl Cubist Continuous 10 agregated models
With extrapolation
Biased
ch2 Cubist Continuous 10 agregated models
Without extrapolation
Biased
cb3 Cubist Continuous 10 agregated models
With extrapolation
knn k-nearest neighbours Discrete
knn_ reg k-nearest neighbours Discrete
logit Logistic regression Discrete
logit lasso Lasso logistic regression Discreate Lambda : obtained using 10-fold cross-validation
mob Model-Based Recursive Partitioning Discrete Variable used for the stratification : X )
o reg Random forests Continte Min n}lmbcr of observations in each leaf : 20
- Nombre d’arbres aggregA©)s : 200
rfl Random forests Discrete (Probabilities estimation trees) Min number\vof obser\'amon.s .111 cach leaf : 10
Number of trees : 100
rf2 Random forests Discrete (Probabilities estimation trees) Min numbervof observations Hi cach leaf : 10
Number of trees : 500
rf3 Random forests Discrete (Probabilities estimation trees) Min numbnrvof observations in each leaf : 30
Number of trees : 100
rf4 Random forests Discrete (Probabilities estimation trees) Min numbcrvof observations " cach leaf : 30
Number of trees : 500
rf5 Random forests Discrete (Probabilities estimation trees) Min numbe\{ of observaflons. l,n cach leaf : 30
Number of trees : 5E00
svml SVM with RBF kernel Discrete Gamma : 0.025
Platt method to get probabilities nu: 0.7
Gamma : 0.0001
svm2 SVM with polynomial kernel Discreate nu = 0.7
DegrA@© = 1
Number of trees : 500
Gamma : 10
xgbl XGBoost Continue Proportion for subset : 75%
Learning rate : 0.05
Max deepth : 2
Number of trees : 2000
Gamma : 2
xgh2 XGBoost Continue Proportion for subset : 100%
Learning rate : 0.5
Max deepth : 2
Number of trees : 1000
Gamma : 1
xgh3 XGBoost Continue Proportion for subset : 75%
Learning rate : 0.01
Max deepth : 1
Number of trees : 500
Gamma : 10
xgh4 XGBoost Continue Proportion for subset : 75%
Learning rate : 0.05
Max deepth : 3

TABLE 4 — Labels and hyperparameters for each algorithm
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6.2 Efficiency of aggregation methods and number of methods
aggregated
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Non informative
y linear
. c c c d d d d d d d d d
Bo |89 |57 |57 | 57 | 819 | 815 | 810 | 815 | 65 | o) | B | 855 | 655
051]-02 (50 |50 |05 [05 (05 05 ]05 |05 |05 |05 |05 |05
Informative
y linear
s c c c d d d d d d d d d
Bo |89 |57 |87 | 57 | B9 | B9 | 81 | 815 | 65 | ) | B | 655 | 655
0.5]-10 {50 |50 |05 |05 |05 05 05 |05 |05 |05 |05 |05
Non informative
y non linear
do | 0 P 03
4 4 4 4
TABLE 5 — Coefficients for each y-generator process.
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