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ABSTRACT
Model-assisted estimators have attracted a lot of attention in the last
three decades. These estimators attempt to make an efficient use
of auxiliary information available at the estimation stage. A working
model linking the survey variable to the auxiliary variables is spec-
ified and fitted on the sample data to obtain a set of predictions,
which are then incorporated in the estimationprocedures. Anice fea-
ture of model-assisted procedures is that they maintain important
design properties such as consistency and asymptotic unbiasedness
irrespective of whether or not the working model is correctly spec-
ified. In this article, we examine several model-assisted estimators
from a design-based point of view and in a high-dimensional setting,
including linear regression and penalized estimators. We conduct an
extensive simulation study using data from the Irish Commission for
EnergyRegulationSmartMeteringProject, to assess theperformance
of severalmodel-assisted estimators in terms of bias and efficiency in
this high-dimensional data set.
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1. Introduction

Surveys conducted by national statistical offices (NSO) aim at estimating finite population
parameters, which are those describing some aspects of the finite population under study.
In this article, the interest lies in estimating the population total of a survey variable Y.
Population totals can be estimated unbiasedly using the well-known Horvitz–Thompson
estimator [23]. In the absence of nonsampling errors, the Horvitz–Thompson estimator
is unbiased with respect to the customary design-based inferential approach, whereby
the properties of estimators are evaluated with respect to the sampling design; e.g., see
[36]. However, Horvitz–Thompson type estimators may exhibit a large variance in some
situations. The efficiency of the Horvitz–Thompson estimator can be improved by incor-
porating some auxiliary information, capitalizing on the relationship between the survey
variableY and a set of auxiliary variables x. The resulting estimation procedures, referred to
asmodel-assisted estimation procedures, use a workingmodel as a vehicle for constructing
point estimators. Model-assisted estimators remain design-consistent even if the working

CONTACT David Haziza dhaziza@uottawa.ca .

Supplemental data for this article can be accessed here. https://doi.org/10.1080/02664763.2022.2047905

© 2022 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2022.2047905&domain=pdf&date_stamp=2022-03-17
mailto:dhaziza@uottawa.ca
https://doi.org/10.1080/02664763.2022.2047905


2 M. DAGDOUG ET AL.

model is misspecified, which is a desirable feature. When the working model provides an
adequate description of the relationship between Y and x, model-assisted estimators are
expected to be more efficient than the Horvitz–Thompson estimator.

The class of model-assisted estimators includes a wide variety of procedures, some of
which have been extensively studied in the literature both theoretically and empirically.
When the workingmodel is the customary linear regressionmodel, the resulting estimator
is the well-known generalized regression estimator (GREG), e.g. Särndal [35], Särndal and
Wright [37] and Särndal et al. [36]. Other works include model-assisted procedures based
on generalized linear models [15,26], local polynomial regression [4], splines [3,16,17,27],
neural nets [30], generalized additive models [31], nonparametric additive models [42],
regression trees [29,41] and random forests [12].

Due to the recent advances of information technology, NSOs have now access to a vari-
ety of data sources, some of which may exhibit a large number of observations on a large
number of variables. So far, the properties of model-assisted estimator have been estab-
lished under the customary asymptotic framework in finite population sampling [24] for
which both the population sizeN and the sample size n increase to infinity, while assuming
that the number of auxiliary variables p is fixed. In other words, existing results require n
to be large relative to p. This framework is generally not adequate in the context of high-
dimensional data sets as pmay be of the same order as n, or even larger, i.e. p>n. A more
appropriate asymptotic framework would let p increase to infinity in addition to N and n.
Cardot et al. [8] studied dimension reduction through principal component analysis and
established the design consistency of the resulting calibration estimator. More recently, Ta
et al. [38] investigated the properties of the GREG estimator from a model point of view
andwhen p is allowed to diverge and [10] studied the asymptotic variance of the calibration
estimator when the number p of calibration variables is going to infinity.

The aim of this paper is to give a general consistency result for a class of model-
assisted estimators when the number p of auxiliary variables is allowed to grow to infinity.
This class of model-assisted estimators includes the GREG estimator as well as model-
assisted estimators based on penalization methods such as ridge, lasso and elastic net. The
latter methods were proposed to cope with multicollinearity between predictors in a high-
dimension setting. Under mild regularity assumptions, we show that these model-assisted
estimators are design consistent provided that p3/n goes to zero. As we argue in Section 3,
this rate can be improved if one is willing to make additional assumptions about the rate of
convergence of the estimated regression coefficient. In particular, we lay out a set of addi-
tional conditions under which the model-assisted ridge estimator is consistent if p/n goes
to zero andmoreover, is

√
n-consistent if p = O(na)with a ∈ [0, 1/2). Also, provided that

the predictors are orthogonal, we show that both the model-assisted lasso and elastic net
estimators are consistent provided that p/n goes to zero.

To the best of our knowledge, an empirical comparison of penalized or nonparametric
model-assisted estimators in terms of bias and efficiency in a high-dimensional setting is
currently lacking. We aim to fill this gap in the article. To assess the performance of several
model-assisted estimators in a high-dimensional setting, we conduct a large simulation
study using data from the IrishCommission for EnergyRegulation SmartMeteringProject.
The data set consists of electricity consumption recorded every half an hour for a 2-year
period and for more than 6000 households and businesses, leading to highly correlated
data. Due to the high-dimensional feature, model-assisted estimators based on a linear
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model tend to breakdown and penalized and reduction dimension based estimators may
provide good alternatives.

The paper is organized as follows. In Section 2, we introduce the theoretical setup.
In Section 3, we investigate the asymptotic properties of several model-assisted estima-
tors: the GREG estimator as well as estimators based on ridge regression, lasso and elastic
net. Section 4 contains an empirical comparison to assess the performance of several
model-assisted estimators in terms of bias and efficiency. In our empirical experiments, we
included model-assisted estimators based on ridge regression, lasso and elastic net, prin-
cipal component regression as well as model-assisted estimators based on CART, random
forests, XGBoost andCUBIST.We considered three sampling designs: simple random sam-
pling without replacement, stratified simple random sampling without replacement and
stratified fixed-size without replacement proportional to size sampling. We make some
final remarks in Section 5. The technical details, including the proofs of some results, are
relegated to the Supplementary Material.

2. The setup

Consider a finite population U = {1, 2, . . . ,N} of size N. We are interested in estimating
ty = ∑

i∈U yi, the population total of the survey variable Y. We select a sample S from U
according to a sampling design P(S) with first-order and second-order inclusion prob-
abilities {πi}i∈U and {πi�}i,�∈U , respectively. In the absence of nonsampling errors, the
Horvitz–Thompson estimator

t̂π =
∑
i∈S

yi
πi

(1)

is design-unbiased for ty provided that πi > 0 for all i ∈ U; that is, Ep(̂tπ) = ty, where
Ep(·) denotes the expectation operator with respect to the sampling design P(S). In the
sequel, unless stated otherwise, the properties of estimators are evaluated with respect
to the design-based approach. Under mild conditions [4,34], it can be shown that the
Horvitz–Thompson estimator t̂π is design consistent for ty.

At the estimation stage, we assume that a collection of auxiliary variables,X1,X2, . . . ,Xp,
is recorded for all i ∈ S. Moreover, we assume that the corresponding population totals
are available from an external source (e.g. a census or an administrative file). Let xi =
[xi1, xi2, . . . , xip]� be the x-vector associated with unit i. Also, we denote byXU = (x�

i )i∈U
the N × p design matrix and XS = (x�

i )i∈S its sample counterpart.
Model-assisted estimation starts with postulating the following working model:

ξ : yi = f (xi) + εi, i ∈ U, (2)

where f (·) is an unknown function and the errors εi are independent randomvariables such
that Eξ [εi|xi] = 0 and Vξ (εi|xi) = σ 2, where σ 2 is an unknown parameter. Although we
assume a homoscedastic variance structure, our results can be easily extended to the case
of unequal variances of the form Vξ (εi|xi) = σ 2ν(xi) for some known function ν(·).
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The unknown function f (·) is estimated by f̂ (·) from the sample data (xi, yi)i∈S. The
fitted model is then used to construct the model-assisted estimator

t̂ma =
∑
i∈U

f̂ (xi) +
∑
i∈S

yi − f̂ (xi)
πi

, (3)

where f̂ (x) denotes the prediction at x under the working model (2). Whenever the pre-
dictor f̂ (·) is sample dependent, the estimator t̂ma is design biased, but can be shown to be
asymptotically design unbiased and design consistent for a wide class of working models,
as the population size N and the sample size n increase.

3. Least squares and penalizedmodel-assisted estimators

3.1. The GREG estimator

Suppose that the regression function f (·) is approximated by a linear combination ofXj, j =
1, . . . , p. The working model (2) reduces to

ξ : yi = x�
i β + εi, i ∈ U, (4)

where β = [β1, . . . ,βp]� ∈ Rp is a vector of unknown coefficients. Under a hypothetical
census, where we observe yi and xi for all i ∈ U, the vector β would be estimated by β̃

through the ordinary least square criterion at the population level:

β̃ = argminβ∈Rp ||yU − XUβ||22 = argminβ∈Rp

∑
i∈U

(yi − x�
i β)2, (5)

where yU = (yi)i∈U . Provided that thematrixXU is of full rank, the solution to (5) is unique
and given by

β̃ =
(
X�
UXU

)−1
X�
UyU =

(∑
i∈U

xix�
i

)−1∑
i∈U

xiyi. (6)

In practice, the vector β̃ in (6) cannot be computed as the y-values are recorded for the
sample units only. An estimator of β̃ , denoted by β̂ , is obtained from (6) by estimating
each total separately using the corresponding Horvitz–Thompson estimator. Alternatively,
the estimator β̂ can be obtained using the following weighted least square criterion at the
sample level:

β̂ = argminβ∈Rp
(
yS − XSβ

)�
�−1

S
(
yS − XSβ

)� = argminβ∈Rp

∑
i∈S

(yi − x�
i β)2

πi
, (7)

where�S = diag(πi)i∈S and yS = (yi)i∈S. Again, the solution to (7) is unique provided that
XS is of full rank and it is given by

β̂ =
(
X�
S �−1

S XS

)−1
X�
S �−1

S yS =
(∑

i∈S

xix�
i

πi

)−1∑
i∈S

xiyi
πi

. (8)
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The prediction of f (·) at x under the working model (4) is f̂lr(x) = x�β̂ . Plugging f̂lr(·)
in (3) leads to the well-known GREG estimator [36]:

t̂greg =
∑
i∈U

f̂lr(xi) +
∑
i∈S

yi − f̂lr(xi)
πi

=
∑
i∈U

x�
i β̂ +

∑
i∈S

yi − x�
i β̂

πi
. (9)

If the intercept is included in the working model, the GREG estimator reduces to the pop-
ulation total of the fitted values f̂lr(xi) = x�

i β̂ ; that is, t̂greg = ∑
i∈U x�

i β̂ . Also, the GREG
estimator can be written as a weighted sum of the sample y-values:

t̂greg =
∑
i∈S

wiSyi, (10)

where

wiS = 1
πi

⎧⎨⎩1 − x�
i

(∑
i∈S

xix�
i

πi

)−1 (∑
i∈S

xi
πi

−
∑
i∈U

xi

)⎫⎬⎭ , i ∈ S.

These weights can be also obtained as the solution of a calibration problem [14]. More
specifically, the weights wiS are such that the generalized chi-square distance

∑
i∈S(wiS −

π−1
i )2/π−1

i isminimized subject to the calibration constraints
∑

i∈S wiSxi = ∑
i∈U xi. This

attractive feature may not be shared by model-assisted estimators derived under more
general working models.

3.2. Penalized least square estimators

While model-assisted estimators based on linear regression working models are easy to
implement, they tend to breakdown when the number of auxiliary variables p is growing
large. Also, when some of the predictors are highly related to each other, a problem known
asmulticollinearity, the ordinary least square estimator β̃ given by (6)may be highly unsta-
ble. As noted byHoerl and Kennard [22], ‘the worse the conditioning ofX�

UXU , themore β̃

can be expected to be too long and the distance from β̃ to β will tend to be large’. In survey
sampling, the effect of multicollinearity on the stability of point estimators has first been
studied by Bardsley and Chambers [1] under the model-based approach. Chambers [9]
and Rao and Singh [33] studied this problem in the context of calibration. These authors
noted that the use of a large number of calibration constraints may lead to highly dispersed
calibration weights, potentially resulting in unstable estimators.

In a classical iid linear regression setting, penalization procedures such as ridge, lasso or
elastic-net can be used to help circumvent some of the difficulties associated with the usual
least squares estimator β̃ . Let β̃pen be an estimator of β obtained through the penalized
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least square criterion at the population level:

β̃pen = argminβ∈Rp

∑
i∈U

(
yi − x�

i β
)2 +

t∑
�=1

λ�||β||γ�
ν�
, (11)

where λ�, ν� and γ� are positive real numbers, ‖ · ‖ν is a given norm and t is a fixed positive
integer representing the number of different norm constraints. The values of ν�, γ� and t
are typically predetermined. The tuning parameter λ� controls the strength of the penalty
that one wants to impose on the norm of β . Most often, the value of λ� is selected through
a cross-validation procedure. The coefficients γ� and ν� are specific to the penalization
method. Hence, they affect the properties of the resulting estimator β̃pen. Three special
cases are considered below.

When t = 1, γ1 = 2 and ν1 = 2, λ1 = λ, the estimator is known as the ridge regression
estimator [21]:

β̃ridge = argminβ∈Rp

∑
i∈U

(
yi − x�

i β
)2 + λ||β||22,

where ||β||22 = ∑p
j=1 β2

j is the usual Euclidean norm of β . The solution is given explicitly
by

β̃ridge =
(
X�
UXU + λIp

)−1
X�
UyU =

(∑
i∈U

xix�
i + λIp

)−1∑
i∈U

xiyi, (12)

where Ip denotes the p × p identity matrix.
When t = 1, ν1 = 1 and λ1 = λ, the estimator β̃pen is known as the lasso estimator [39]:

β̃ lasso = argminβ∈Rp

∑
i∈U

(
yi − x�

i β
)2 + λ||β||1, (13)

where ||β||1 = ∑p
j=1 |βj| is the L1-norm of β . As for the ridge, the lasso has the effect

of shrinking the coefficients but, unlike the ridge, it can set some coefficients βj to zero.
Except when the auxiliary variables are orthogonal, there is no closed-form formula for
the lasso estimator β̃ lasso [20]. In survey sampling, McConville et al. [28] investigated the
design-based properties of the lasso model-assisted estimator for fixed p.

The elastic-net estimator, that was suggested by Zou and Hastie [43], combines two
norms: the Euclidean norm ‖ · ‖2 and the L1 norm, ‖ · ‖1. If, in (11), we set t = 2, γ1 = 1,
ν1 = 1, γ2 = 2, ν2 = 2, λ1 = λα and λ1 = λ(1 − α), the resulting estimator is the elastic-
net estimator, which can be viewed as a trade-off between the ridge estimator and the lasso
estimator, realizing variable selection and regularization simultaneously:

β̃en = argminβ∈Rp

∑
i∈U

(
yi − x�

i β
)2 + λ

[
α||β||1 + (1 − α)||β||22

]
,

for λ > 0 and α ∈ [0, 1] a parameter that is usually chosen using a grid of multiple values
of α. The penalized regression estimator β̃pen in (11) is unknown as the y-values are not
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observed for the non-sample units. To overcome this issue, we use the following weighted
penalized least square criterion at the sample level:

β̂pen = argminβ∈Rp

∑
i∈S

1
πi

(
yi − x�

i β
)2 +

t∑
�=1

λ�||β||γ�
ν�
. (14)

Amodel-assisted estimator based on a penalized regression procedure is obtained from (3)
by replacing f̂ (x) with f̂pen(x) = x�β̂pen, leading to

t̂pen =
∑
i∈U

f̂pen(xi) +
∑
i∈S

yi − f̂pen(xi)
πi

=
(∑

i∈U
x�
i

)
β̂pen +

∑
i∈S

yi − x�
i β̂pen

πi
, (15)

where β̂pen is a generic notation used to denote the estimated regression coefficient
obtained through either lasso, ridge or elastic net. Unlike the GREG estimator, t̂greg, the
penalized model-assisted estimator is sensitive to unit change of the X-variables because
β̂pen is sensitive to unit change. This is why, as in the classical regression setting, stan-
dardization of the X-variables is recommended before computing β̂pen. If the intercept is
included in the model, then it is usually left un-penalized.

Remark 3.1: In the case of ridge regression, the estimator β̂ridge is given by

β̂ridge =
(
X�
S �−1

S XS + λIp
)−1

X�
S �−1

S yS =
(∑

i∈S

xix�
i

πi
+ λIp

)−1∑
i∈S

xiyi
πi

. (16)

Using (16) in (15) leads to the ridge model-assisted estimator t̂ridge that can be expressed
as a weighted sum of sampled y-values, t̂ridge = ∑

i∈S wiS(λ)yi with weights given by

wiS(λ) = 1
πi

⎧⎨⎩1 − x�
i

(∑
i∈S

xix�
i

πi
+ λIp

)−1 (∑
i∈S

xi
πi

−
∑
i∈U

xi

)⎫⎬⎭ , i ∈ S.

These weights can also be obtained through a penalized calibration problem. It can be
shown that they minimize the penalized generalized chi-square distance,

∑
i∈S(wiS −

π−1
i )2/π−1

i + λ−1‖∑i∈S wiSxi −
∑

i∈U xi‖22 [2,9]. If some X-variables are left un-
penalized in (11), the resulting weights ensure consistency between the survey estimates
and their corresponding population totals associated with these variables.

We end this section by noting that the penalized model-assisted estimator t̂pen is sensi-
tive to the choice of the penalty parameter λ�. In the case of ridge regression, Bardsley and
Chambers [1] suggested the ridge trace method for selecting the penalty parameter λ. This
method consists of plotting the weightswiS(λ), i ∈ S for values of λ from a pre-determined
grid values and to choose the value of λ for which the weights wiS(λ) are positive for all
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i ∈ S and
∑

i∈S wiS(λ)xi −
∑

i∈U xi is the smallest difference among all the differences con-
sidered for the grid values of λ. Using the fact that the modified penalty λ∗ = λ/(1 + λ)

lies between 0 and 1 and is an increasing function of λ, Beaumont and Bocci [2] proposed
a method based on the bisection algorithm to first determine λ∗ and then, λ. Guggemos
and Tillé [19] implemented a Fisher scoring algorithm in order to find the value of λwhich
maximizes a design-based estimated log-likelihood criterion. In case of the lasso model-
assisted estimator, McConville et al. [28] used a cross-validation procedure to choose the
best value of λ. More research is needed to suggest a unified criterion in order to find
the best penalty in a sample-based framework. This is beyond the scope of the article.
Most of the computer software use a cross-validation criterion to choose the best penalty
parameter.

3.3. Consistency of the GREG and penalized GREG estimators in a
high-dimensional setting

Weadopt the asymptotic framework of [24] and consider an increasing sequence of embed-
ded finite populations {Uv}v∈N of size {Nv}v∈N. In each finite population Uv, a sample, of
size nv, is selected according to a sampling design Pv(Sv) with first-order inclusion prob-
abilities πi,v and second-order inclusion probabilities πi�,v. While the finite populations
are considered to be embedded, we do not require this property to hold for the samples
{Sv}v∈N. This asymptotic framework assumes that v goes to infinity, so that both the finite
population sizes {Nv}v∈N, the samples sizes {nv}v∈N and the number of auxiliary variables
{pv}v∈N go to infinity. To improve readability, we shall use the subscript v only in the
quantities Uv,Nv, nv and pv; for instance, quantities such as πi,v shall be simply denoted
by πi.

The following assumptions are required to establish the consistency of the GREG and
penalized GREG estimators in a high-dimensional setting.

(H1) We assume that there exists a positive constant C1 such that N−1
v
∑

i∈Uv
y2i < C1.

(H2) We assume that limv→∞
nv
Nv

= π ∈ (0, 1).

(H3) There exist a positive constant c such that mini∈Uv πi � c > 0; also, we assume
that lim supv→∞ nvmaxi	=�∈Uv |πi� − πiπ�| < ∞.

(H4)We assume that there exists a positive constantC2 such that, for all i ∈ Uv, ||xi||22 ≤
C2pv, where ‖ · ‖2 denotes the usual Euclidean norm.

(H5)We assume that ‖β̂‖1 = Op(pv), where β̂ is the least square estimator given in (8)
and ‖ · ‖1 denotes the L1 norm.

The assumptions (H1), (H2) and (H3) were used by Breidt and Opsomer [4] in a non-
parametric setting and similar assumptions were used by Robinson and Särndal [34] to
establish the consistency of the GREG estimator in a fixed dimensional setting. These
assumptions hold for many usual sampling designs such as simple random sampling with-
out replacement, stratified designs [4], or high-entropy sampling designs. Assumptions
(H4) and (H5) can be viewed, respectively, as extensions of Assumption A.1 and Assump-
tion A.3 in [34] to pv-dimensional vectors with pv growing to infinity. Assumption (H5)
is not very restrictive in this high-dimensional setting as it requires that components of
β̂ are all bounded. When pv is fixed, then our assumptions essentially reduce to those
of [34].
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Result 3.1: Assume (H1)–(H5). Consider a sequence of GREG estimators {̂tgreg}v∈N of ty.
Then,

1
Nv

(̂tgreg − ty) = Op

⎛⎝√p3v
nv

⎞⎠ .

If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy p3v/nv =
o(1), then N−1

v (̂tgreg − ty) = op(1).

The
√
n-consistency obtained by Robinson and Särndal [34] is a special case of

Result 3.1 with pv = O(1). Result 3.1 highlights the fact that the rate of convergence
decreases as the number of auxiliary variables pv increases. Yet, this result guarantees the
existence of a consistent GREG estimator, even when the number of auxiliary variables is
allowed to diverge. An improved consistency rate for t̂greg may be obtained if, in (H5), the
usual Euclidean norm is used instead of L1-norm. Establishing the rate of convergence of
the sampling error β̂ − β̃ may also be utilized to obtain a lower consistency rate for t̂greg;
e.g. see [10].

The next result establishes the design-consistency of model-assisted penalized regres-
sion estimators. The proof is similar to that of Result 3.1 and is given in the Supplementary
Material.

Result 3.2: Assume (H1)–(H4). Consider a sequence of penalized model-assisted estimators
{̂tpen}v∈N of ty obtained by either ridge, lasso or elastic-net. Then,

1
Nv

(̂tpen − ty) = Op

⎛⎝√p3v
nv

⎞⎠ .

If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy p3v/nv =
o(1), then N−1

v (̂tpen − ty) = op(1).

The above result makes no use of the asymptotic convergence rate of β̂pen which
depends on the penalization method. For example, if one can establish that ||̂βpen||1 =
Op(γv), then N−1

v (̂tpen − ty) = Op(γv
√
pv/nv). Alternatively, improved consistency rates

of t̂pen may be obtained if one can establish the magnitude of the sampling error β̂pen −
β̃pen in a high-dimension setting. In other words, obtaining these improved rates requires
additional assumptions, unlike Result 3.2 which is obtained under relatively mild assump-
tions.

Next, we show that, under additional assumptions on the auxiliary variables, themodel-
assisted ridge estimator is L1 design-consistent for ty if pv/n goes to zero and that it has the
usual

√
n-consistency rate if pv = O(nav)with 0 ≤ a < 1/2, which constitutes a significant

improvement over Result 3.2.

Result 3.3: Assume (H1)–(H4). Also, assume that there exists a positive constant C̃ such that
λmax(X�

Uv
XUv) � C̃Nv, where λmax(X�

Uv
XUv) is the largest eigenvalue of X�

Uv
XUv . Assume

also that Nv/λv = O(1).
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(1) Then, there exists a positive constant C such that Ep[||̂βridge||22] � C and

1
Nv

Ep

∣∣∣∣̂tridge − ty

∣∣∣∣ = O
(√

pv
nv

)
.

If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy
pv/nv = o(1), then N−1

v Ep |̂tridge − ty| = o(1).
(2) Ep(||̂βridge − β̃ridge||22) = O(pv/nv). Thus, if pv/nv = o(1), then Ep(||̂βridge −

β̃ridge||22) = o(1).
(3) We have the following asymptotic equivalence:

1
Nv

(̂
tridge − ty

) = 1
Nv

(̂
tdiff,λ − ty

)+ Op

(
pv
nv

)
,

where

t̂diff,λ =
∑
i∈Sv

yi/πi −
⎛⎝∑

i∈Sv
xi/πi −

∑
i∈Uv

xi

⎞⎠�

β̃ridge

and
1
Nv

Ep

∣∣∣∣̂tridge − ty

∣∣∣∣ = O
(

1√
nv

)
+ O

(
pv
nv

)
.

If pv = O(nav) with 0 ≤ a < 1/2, then

1
Nv

(̂
tridge − ty

) = 1
Nv

(̂
tdiff,λ − ty

)+ op (1)

and
1
Nv

Ep

∣∣∣∣̂tridge − ty

∣∣∣∣ = O
(

1√
nv

)
.

It follows from Result 3.3 that, for pv = O(nav) with 0 ≤ a < 1/2, the asymptotic vari-
ance of the model-assisted ridge estimator t̂ridge is equal to the variance of the generalized
difference estimator t̂diff,λ. For a = 1/2, we note that the model-assisted estimator is still√
n-design consistent but the remainder term is no longer negligible with respect to t̂diff,λ

and the variability of this term should be consider to compute the asymptotic variance of
t̂ridge. The case ofmodel-assisted estimators based on lasso and elastic-net ismore intricate.
This is due to the fact that both estimators involve the L1-norm. As a result, a closed-form
expression of these estimators cannot be obtained. However, if the predictors are orthogo-
nal, a closed-form expression exists for the lasso and elastic-net estimators and improved
consistency rates can be obtained, see Proposition 3.1 below. The case of non-orthogonal
predictors is more challenging and is beyond the scope of this article.

Proposition 3.1: Suppose assumptions (H1)–(H3) and that the sampling design and the
X-variables are such that the columns of �

−1/2
Sv XSv are orthogonal. Suppose also that

there exist positive quantities C3 and C4 such that maxj=1,...,pvN−1
v
∑

i∈Uv
x4ij ≤ C3 <
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∞ and minj=1,...,pvN−1
v
∑

i∈Uv
x2ij ≥ C4 > 0. Then, N−1

v (̂tgreg − ty) = Op(
√
pv/nv) and

N−1
v (̂tpen − ty) = Op(

√
pv/nv), where t̂pen denotes either the lasso or the elastic-net esti-

mator.

4. Simulation study

In this section,we provide an empirical comparison of severalmodel-assisted estimators, in
addition to the estimators discussed in Section 3. In addition,we consideredmodel-assisted
estimators based on principal component regression [8], regression trees [5], random
forests [6], k-nearest neighbours, XGBoost [11] and Cubist [32]. For a description of these
methods, see [13,20] and the references therein.

We used data from the Irish Commission for Energy Regulation (CER) Smart Metering
Project that was conducted in 2009–2010 (CER, 2011)1 [8]. This project focused on energy
consumption and energy regulation. About 6000 smart meters were installed to collect the
electricity consumption of Irish residential and business customers every half an hour over
a period of about 2 years.

We considered a period of 14 consecutive days and a population of N = 6291 smart
meters (households and companies). Each day consisted of 48 measurements, leading to
672 measurements for each household. We denote by Xj = X(tj), j = 1, . . . , 672, the elec-
tricity consumption (in kW) at instant tj and by xij the value ofXj recorded by the ith smart
meter for i = 1, . . . , 6, 291. It should be noted that thematrixN−1X�Xwas ill-conditioned
with a condition number equal to 254 753. This suggests that some of the X-variables were
highly correlated with each other.

We generated four survey variables based on these auxiliary variables according to the
following models:

Y1 = 400 + 2X1 + X2 + 2X3 + N (0, 1500);

Y2 = 500 + 2X4 + 4001 (X5 > 156) − 4001 (X5 � 156) + 10001 (X2 > 190)

+ 3001 (X5 > 200) + N (0, 1500);

Y3 = 1 + cos(2X1 + X2 + 2X3)
2 + ε1;

Y4 = 4 + 3 · V
({X1 + X2}2

)−1/2 × {X1 + X2}2 + N (0, 0.01),

where V(·) denotes the empirical variance and the errors ε1 in the model for Y3 were gen-
erated from an Exp(10) and these errors were centred so as to obtain a mean equal to
zero.

Our goal was to estimate the population totals tyj = ∑
i∈U yij, j = 1, . . . , 4. From the

population, we selected R = 2500 samples, of size n = 600, which corresponds to a sam-
pling fraction n/N of about 10%. We considered three sampling schemes: simple random
sampling without replacement, stratified simple random sampling without replacement
with optimal allocation and stratified without replacement proportional to size sampling
with proportional allocation.

In each sample, we computed 12 model-assisted estimators of the form

t̂(j)ma =
∑
i∈U

f̂ (j)(xi) +
∑
i∈S

yi − f̂ (j)(xi)
πi

, j = 1, 2, . . . , 12,
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where the predictors f̂ (j)(xi), j = 1, 2, . . . , 12, were obtained using the following proce-
dures:

Procedure 1: ‘LR’ : Deterministic linear regression, leading to the GREG estimator.
Procedure 2: ‘CART’: Classification and regression tree algorithm [5], leading to an

estimator closely related to that of [29] and implemented with the R-package rpart.
Procedure 3: ‘RF’: Random forests with the algorithm of [6] with B = 1000 trees, a min-

imal number of elements in each terminal node n0 = 5 and p0 = �√p
 variables
selected randomly at each split, where �·
 denotes the customary floor function. The
algorithm leads to the estimator described in [12]. Simulations were implemented
with the R-package ranger.

Procedure 4: ‘Ridge’: Ridge regression with a regularization parameter determined by
cross-validation and implemented with the R-package glmnet. The estimator was
studied by [18].

Procedure 5: ‘Lasso’: Lasso regression with a regularization parameter determined by
cross-validation and implemented with the R-package glmnet [28].

Procedure 6: ‘EN’: Elastic net regression with penalization coefficients determined by
cross-validation with the R-package glmnet.

Procedure 7: ‘XGB’: XGBoost algorithm [20] with 50 trees in the additive model, each
tree being with a depth of at most 6 and a learning rate λ = 0.01. Simulations were
implemented with the R-package XGBoost.

Procedure 8: ‘5NN’: 5-nearest neighbours predictor with the Euclidean distance and
implemented with the R-package caret.

Procedure 9: ‘Cubist’: A cubist algorithm [25] with 5 models in each predictor, imple-
mented with theR-packagecubist; the algorithm and its adaptation for survey data
are described in [13].

Procedure 10: ‘PCR1’: Principal component regression based on the first �p1/4
 compo-
nents kept and implemented with the R-package pls [8].

Procedure 11: ‘PCR2’: Principal component regression based on the first �p2/4
 compo-
nents kept.

Procedure 12: ‘PCR3’: Principal component regression based on the first �p3/4
 compo-
nents kept.

As ameasure of bias of themodel-assisted estimators t̂(j)ma, j = 1, 2, . . . , 12, we computed
the Monte Carlo percent relative bias defined as

RBMC

(̂
t(j)ma

)
= 100 × 1

R

R∑
r=1

(̂t(j,r)ma − ty)
ty

, j = 1, 2, . . . , 12,

where t̂(j,r)ma denotes the estimator t̂(j)ma at the rth iteration, r = 1, . . . ,R. As a measure of
efficiency, we computed the relative of efficiency, using the Horvitz–Thompson estimator
t̂π given by (1), as the reference. That is,

REMC

(̂
t(j)ma

)
= 100 × MSEMC (̂t(j)ma)

MSEMC (̂tπ)
, j = 1, 2, . . . , 12,
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Figure 1. Relative efficiency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y1 with SRSWOR (n = 600) and increasing number of auxiliary variables.

whereMSEMC (̂t(j)ma) = R−1∑R
r=1(̂t

(j,r)
ma − ty)2 andMSEMC (̂tπ) is defined similarly.

We were also interested in investigating to which extent the model-assisted estimators
t̂(j)ma, j = 1, . . . , 12 were affected by the inclusion of a large number of predictors in the
working models. To that end, in addition to the variables X1, . . . ,X5, we included dnoise
predictors in the working models. These predictors were available in the Irish data set. We
used the following values for dnoise: 5, 10, 20, 50, 100, 200, 300 and 400.

4.1. Simple random samplingwithout replacement

In this section, we present the results obtained under simple random sampling without
replacement (SRSWOR) of size n = 600. All the point estimators t̂(j)ma, j = 1, . . . , 12, exhib-
ited a negligible or small percent RB with a maximum value of about 3.1% (obtained in the
case of the GREG estimator). For this reason, results pertaining to relative bias are not
reported here.

Figures 1–4 display the relative efficiency of the model-assisted estimators t̂(j)ma, j =
1, . . . , 12 as a function of the number of auxiliary variables incorporated in the work-
ing models. To improve readability, we have truncated some large values of RE, when
applicable.

We begin by discussing the results on relative efficiency pertaining to the estimation
of the total of the survey variable Y1. For low-dimensional settings, the GREG estima-
tor was very efficient with values of RE below 10%. These results can be explained by the
fact that Y1 was linearly related to the x-variables. However, as the number of variables
dnoise increased, the efficiency of the GREG estimator rapidly deteriorated, suggesting that
the performance of the GREG estimator is sensitive to the dimension of the x-vector. As
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Figure 2. Relative efficiency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y2 with SRSWOR, n = 600 and increasing number of auxiliary variables.

Figure 3. Relative efficiency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y3 with SRSWOR, n = 600 and increasing number of auxiliary variables.

expected, model-assisted estimators based on regularization methods such as ridge, lasso,
elastic-net or dimension reductionmethods such as principal components regression, per-
formed generally very well. Unlike the GREG, these estimators were not much affected by
the number of auxiliary variables incorporated in themodel. Turning to themodel-assisted
estimator based on a 5-nn, we note that it was less efficient than most competitors and that
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Figure 4. Relative efficiency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y4 with SRSWOR, n = 600 and increasing number of auxiliary variables.

its efficiency got worse as dnoise increased, a phenomenon referred to as the curse of dimen-
sionality. The model estimators based on XGBoost, Cubist and random forests performed
quite well and did not seem to be affected by the number of auxiliary variables incorpo-
rated in the model. Finally, the estimators based on CART were less efficient than those
obtained through the other machine learning methods.

The results pertaining to the survey variable Y2 and displayed in Figure 2 were fairly
consistent with those obtained for the survey variable Y1 with one exception: the Cubist
algorithm was significantly more efficient than the other procedures in all the scenarios.

Turning to the survey variable Y3 (see Figure 3), the model-assisted estimator based
on random forests was significantly more efficient than the Horvitz–Thompson estimator,
especially for large values of dnoise. The other procedures led to estimators less efficient than
the Horvitz–Thompson estimator with values of RE above 100. In particular, the GREG
estimator broke down as the number of auxiliary variable increased. The performance of
model-assisted estimators based on CART and XGBoost algorithms deteriorated as the
dimension increased. In a high-dimension setting with highly correlated predictors, ran-
dom forests improved over CART due to the random subsampling of p0 variables among
the p variables, generating then decorrelated trees [20].

The results in Figure 4 about the survey variable Y4 were similar to the ones in previous
figures. Most estimators remained mostly unaffected by the number of auxiliary variables
dnoise. Again, the model-assisted estimator based on the Cubist algorithm was the best in
all the scenarios.

4.2. Stratified simple random samplingwith optimal allocation

In the second simulation study, we partitioned the Irish residential and business customer
population into four strataU1, . . . ,U4, using an equal quantile method with respect to the
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Table 1. First-order inclusion probabilities and sampling
weights within strata.

Stratum 1 2 3 4

πi 0.012 0.022 0.028 0.316
wi = π−1

i 77.85 43.83 35.11 3.16

variable, X1, the electricity consumption at instant t1. From the population, we selected
R = 2500 stratified simple random samples, of size n = 600. The stratum sample sizes nh
were determined using an X2-optimal allocation, where X2 denotes the electricity con-
sumption recorded at instant t2. This led to n1 = 20, n2 = 36, n3 = 45 and n4 = 499. The
first-order inclusion probabilities,πi = nh/Nh, i ∈ Uh and the sampling weightswi = π−1

i
are shown in Table 1.

We confined to the survey variables Y1 and Y3 only and we aimed at estimating ty1 and
ty3 . It is worth pointing out that the resulting sampling design was informative as the vari-
ables used at the design stage (X1 and X2) were also related to the survey variables Y1 and
Y3. In fact, theMonte Carlo coefficient of correlation between the sampling weights andY1
was approximately equal to 0.402. We do not report the coefficient of correlation between
the sampling weights andY3 as the relationship betweenY3 and the set of predictorsX1,X3
is not linear.

Again, in each sample we computed twelve model-assisted estimators t̂(j)ma, j = 1, . . . , 12
for each of ty1 and ty3 . Since most machine learning software packages do not take the
sampling weights into account, we have included the design variables X1 and X2 in the set
of predictors.

We begin by discussing the results pertaining to the estimation of the total of the survey
variable Y1. Figures 5 and 6 display the Monte Carlo percent relative bias and the Monte
Carlo relative efficiency as a function of the number of variables dnoise. Except for the
model-assisted estimators based on 5-nn and random forest, the other estimators exhibit a
small value of RB for all values of dnoise. Again, the 5-nn model-assisted estimator suffered
from the curse of dimensionality. Turning to the estimator based on random forests, we
note from Figure 5 that the bias increased as the number of predictors dnoise increased. For
instance, for dnoise = 400, the value of RB was just above 10%. This significant bias may be
explained by the fact that random forests is the only procedure among the ones considered
in our simulation that randomly selects p0 = √p variables among the initial p predictors
at each split. For instance, for dnoise = 400, only 20 variables are randomly selected at each
split. As a result,most predictions obtained through a random forests algorithmwere based
on misspecified working models, leading to potentially bad fits and large residuals. Also,
each prediction corresponds to a weighted mean computed within each node with n0 = 5
observations only. Therefore, each predictions corresponds to a ratio-type estimate based
on five observations only. This, together with the fact that the sampling weights are highly
variable, constitutes a conducive ground for the occurrence of small sample bias. In terms of
efficiency, except for the GREG, the 5-nn and the random forest estimators, the other pro-
cedures performed well with values of RE ranging from 60% to 80%. The best procedures
were Cubist and Lasso.

We now turn to the survey variableY3. First, theMonte Carlo relative bias was negligible
for all the estimation procedures and are not reported here. Results about relative efficiency
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Figure 5. Relative bias of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the total of
Y1 with stratified simple random sampling with X2-optimal allocation, n = 600 with increasing number
of auxiliary variables.

Figure 6. Relative efficiency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y1 with stratified simple random sampling with X2-optimal allocation, n = 600 and increasing
number of auxiliary variables.

are plotted in Figure 7. Random forests performed extremely well and their performance
improved as dnoise increased. This suggests that the method was able to extract the infor-
mation contained in the predictors. This was also true for Cubist and XGBoost, although
to a lesser extent.
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Figure 7. Relative efficiency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y3 with stratified simple random sampling with X2-optimal allocation, n = 600 and increasing
number of auxiliary variables.

To get a better understanding of the performance of random forests for the estimation
of the total of the survey variable Y1, we conducted additional scenarios based on different
values of the hyper parameters n0, the number of observations within each terminal nodes,
and p0, the number of variables randomly selected at each split among the initial pmodel
variables. We used the following values for n0 and p0:

• n0 = 5 observations and p0 = √p variables which are the default choices in the R-
package ranger;

• n0 = 5 observations and p0 = p variables;
• n0 = 5 observations and p0 = √p variables, with, in addition, the design variables X1,

X2, as well as the vector of inclusion probabilities and the vector of strata that were
selected with probability 1, at each split, besides the p0 variables;

• n0 = n13/20 observations and p0 = √p variables.

TheMonte Carlo percent relative bias is displayed in Figure 8. We note that relative bias
wasmuch smaller (always less than 1%) when the design variables were considered besides
p0 variables at each split. To a lesser extent, the bias decreased when more observations
were allowed in each terminal node. These results suggest, that, when the sampling design
is informative, to avoid significant small sample bias, we recommend to force the design
variables to be selected at each split. This option is available in the R package ranger.

4.3. Stratified inclusion probability proportional-to-size samplingwithout
replacement

We consider the stratified population described in Section 4.2. In each stratum, we selected
units according to a fixed-size inclusion probability proportional-to-size sampling without
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Figure 8. Comparison of different configurations of hyper-parameters for t̂rf for the estimation of the
total of Y1 with stratified simple random sampling and X2-optimal allocation, n = 600.

replacement using X2, the electricity consumption at instant t = 2, as the size variable.
In each stratum, we used the sample size nh were determined according to proportional
allocation; i.e. nh = n · Nh/N. The first-order inclusion probabilities were then given by

πi = nhxi2∑
j∈Uh

xj2
, i ∈ Uh, and h = 1, 2, 3, 4.

As in Section 4.2, we focused on estimating ty1 and ty3 and we computed the same twelve
model-assisted estimators t̂(j)ma, j = 1, . . . , 12. The inclusion probabilities were highly cor-
related with the survey variable Y1, with a correlation coefficient of about 0.62; we do not
report the coefficient of correlation in the case ofY3 as the underlying relationshipwas non-
linear. Based on findings from Section 4.2, we adopted the following configuration for the
random forest algorithm: we considered n0 = 5 observations in each terminal node and,
at each split, we randomly selected p0 = √p variables. Note that the design variables X1
and X2 as well as the vector of inclusion probabilities and the vector of stratum indicators
were selected with probability 1 at each split in addition to the p0 variables.

All the estimators exhibited a negligible relative bias (less than 1%). Figures 9 and 10
show the relative efficiency corresponding to ty1 ty3, respectively.

From Figure 9, we note that most estimators exhibited a behaviour similar to that
obtained in the case the stratified simple random sampling based on an X2-optimal allo-
cation (see Section 4.2). However, we note that the estimators PCR1 and PCR2 did poorly
unlike in the case stratified simple random sampling based on an X2-optimal allocation.
This poor behaviour may be due to the fact that the sampling design was now much more
informative and keeping a few principal components only may have led to a loss of infor-
mation. The estimator PCR3 based on more principal components did better than PCR1
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Figure 9. Relative efficiency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y1 with stratifiedwithout replacement X2-proportional to size sampling, n = 600 and increasing
number of auxiliary variables.

Figure 10. Relative efficiency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y3 with stratifiedwithout replacement X2-proportional to size sampling, n = 600 and increasing
number of auxiliary variables.
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Figure 11. Average electricity consumption on each stratum during first week.

and PCR2. From Figure 10, we note that the use of model-assisted estimators led to signif-
icant improvement over the Horvitz–Thompson estimator, with value of relative efficiency
ranging from 6% to 22%.

4.4. Stratified simple random samplingwith proportional allocation

In this section, we consider a more realistic scenario based again on the Irish residen-
tial and business customer data. As a stratification variable, we used the mean electricity
consumption recorded during the first week. Again, we constructed four strata using an
equal-quantile method based, this time, on the mean electricity consumption; see also [7]
who used a similar design. Themean trajectories during the first week within each stratum
are plotted in Figure 11. From Figure 11, we note that Stratum 1 corresponds to consumers
with low global levels of electricity consumption, whereas Stratum 4 consists of consumers
who have high levels of electricity consumption.

Our aim was to estimate the total electricity consumption recorded on the Monday of
the second week and given by ty = ∑6291

i=1
∑384

j=336 yij, where yij is the electricity consump-
tion recorded for the i th unit at the jth instant. Within each stratum, we selected a sample,
of size nh, according to simple random sampling without replacement. The nh’s were deter-
mined according to proportional allocation; i.e. nh = n × (Nh/N) with n = 600. In each
of the 2500 samples, we computed the same 12 model-assisted estimators as in the previ-
ous sections. Again, we computed the Monte Carlo percent relative bias and the relative
efficiency for each the 12 estimators. The results are presented in Table 2.

From Table 2, we note that the 5-nn model-assisted estimator was the only estimator
to exhibit a non-negligible bias. Although it was less efficient than its competitors, it was
more efficient than the Horvitz–Thompson estimator with a value of RE of about 65.6%.
The ridge estimator was the most efficient with a value of RE equal to 4% and was closely
followed by lasso, elastic-net, Cubist and principal components model-assisted estimators.
TheGREGestimator performed verywell with a value of RE of about 9.3%. Random forests
led to considerable improvement over the CART model-assisted estimator with values of
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Table 2. Monte Carlo percent relative bias and
relative efficiency of several model-assisted
estimators under stratified simple random sam-
pling with proportional allocation.

Estimator Relative bias Relative efficiency

LR 0.2 9.3
CART −0.1 41.0
RF −1.1 17.0
Ridge 0.1 4.0
Lasso 0.2 4.1
EN 0.2 4.1
XGB −1.7 24.9
NN5 −4.0 65.6
Cubist −0.0 4.3
PCR1 0.1 4.9
PCR2 0.1 4.2
PCR3 0.1 4.2

RE of 17% and 41%, respectively. Still, random forests were less efficient than the GREG
estimator, which is not surprising as the relationship between the survey variable and the
auxiliary variables was linear.

5. Final remarks

In this paper, we have examined a number of model-assisted estimation procedures in a
high-dimensional setting both theoretically and empirically. If the relationship between the
survey variable and the auxiliary information can be well described by a linear model, our
results suggest that penalized estimators such as ridge, lasso and elastic net perform very
well in terms of bias and efficiency, even in the case p = n. Model-assisted estimators based
on random forests, Cubist and XGBoost methods were mostly unaffected by the number
of predictors incorporated in the workingmodel, even in the case of complex relationships
between the study and the auxiliary variables. As expected, the GREG estimator suffered
from poor performances in the case of a large number of auxiliary variables.

The procedure Cubist stood out from the other machine learning procedure with
very good performances in virtually all the scenarios. Further work is needed to estab-
lish the theoretical properties of model-assisted estimators based on Cubist in both
low-dimensional and high-dimensional settings.

Variance estimation is an important stage of the estimation process. Further research
includes identifying the regularity conditions under which the variance estimators are
design consistent in a high-dimensional setting.

We end this article by mentioning that virtually all the machine learning software pack-
ages cannot handle design features such as unequal weights and stratification. For instance,
some random forests algorithms may involve a bootstrapping procedure and/or a cross-
validation procedure. To fully account for the sampling design, both procedures must be
modified so as to account for the design features. One notable exception is the R package
RPMS [40] that has the ability to incorporate sampling weights for CART and random
forests. Not fully accounting for the sampling design may be viewed as a form of model
misspecification.However,model-assisted estimation procedures remain design consistent
even if themodel is misspecified. In our experiments, several machine learning procedures
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(e.g. random forests, Cubist, XGboost) performed very well in most scenarios even though
we did notmodify the bootstrapping and cross-validation procedures to account for design
features. In other words, it seems that, accounting for predictors that are highly predictive
of the Y-variable, seems to be the preponderant factor with respect to the efficiency aspect
of model-assisted estimators. We conjecture that fully accounting for the sampling design
will likely lead to additional efficiency gains but that the predictive power of the model
likely constitutes the ‘determining factor’. Developing machine learning procedures that
fully account for the sampling design is currently under investigation.

Note

1. The data are available on request at:https://www.ucd.ie/issda/data/commission
forenergyregulationcer/.
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