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Asymptotic assumptions

(H1) We assume that there exists a positive constant Cy such that N, ' >~ y? < €.
i€U,

(H2) We assume that lim % =m e (0,1).

V—00 v

(H3) There exists a positive constant ¢ such that m(i]n m; = ¢ > 0; also, we assume that
€Uy

limsup n, max |my — mm| < oo.
v—00 1#ALEU,

(H4) We assume that there exists a positive constant Cy such that, for all i € U,, ||x;|[3 <

Capy, where || - ||2 denotes the usual Euclidean norm.

(H5) We assume that || BHI = Op(py), where B is the least square estimator given in (8)

in the main article and || - ||; denotes the L' norm.

Proof of Result 3.1

Result 3.1. Assume (H1)-(H5). Consider a sequence of GREG estimators {tgreq }ven of ty.

Then,



If the numbers of auziliary variables {p,}ven and the sample sizes {n, }ven satisfy pd/n, =

o(1), then Nv_l(?greg —ty) = op(1).

Proof. We adapt the proof of Robinson and Sarndal (1983) to a high-dimensional setting.

Let I; be the sample membership indicator for unit ¢ such that [; = 1if ¢ € S and I; = 0,

otherwise. Let o := I;/m; — 1 for all ¢ € U,. We consider the following decomposition:
1 1 P
N (tgreg — ty) = oA > aiyi =Y 0B, (1)
v Y iet, j=1
1 .
where b; = Zier a5 for j = 1,2,...,p,. Now, the first term does not depend on the

Ny
auxiliary information and we have (Robinson and Sérndal, 1983; Breidt and Opsomer, 2000):
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1 1 1

Ep A Z @il | =5 ny -Ep(ef) + N2 Z Z Yyiye - Ep(aiau). (2)
Y ieu, v oieU Y GeU, LeU, b4

We have Ey(a?) = (1 — m)/m < 1/c and for i # £, Ep(auoy) = (my — mimg)/mime <

max; ¢ev, iz |mie — mime|/c* by Assumption (H3). It follows from (H1), (H2) and (H3) that

2
1 1 9 | My MAX; gy, it |Tie — iy
By (s Xo) < oy T I punl 5 5y,

ieUy Y ieU, 1€Uy LeUy 0#£i
1 Ny MAX; ey, it |Tie — mime | 1 1
< + Lelui? > p=0(—] ©
cN, C* Ny N, = Ty
K3 v

and so,

\;v S o

1€Uy

o, (jz) . (4)

Now, consider the second term from the right-side of (1):
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By Assumption (H5), we have that ||BH1 = Op(pv). Furthermore,
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and
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by Assumptions (H2)-(H4). It follows that

The result follows by using (1), (4), (5), (7) and Assumption (H5):

1 -~ 1 P 1 3 3
- tgreg—tm\m;[]ai% i =0 () v (i) =0 |2
1 v J=

Proof of Result 3.2

Result 3.2. Assume (H1)-(H5). Consider a sequence of penalized model-assisted estimators

{fpen}veN of t, obtained by either ridge, lasso or elastic-net. Then,

1 | v}
Nv(tpen_ty):(op< m)

If the numbers of auziliary variables {p,}ven and the sample sizes {n, }ven satisfy p/n, =

o(1), then Ny Y(tpen —t,) = 0p(1).

Proof. From the proof of result (3.1), we only need to show that HBpean = Op(py) or
I Bpen”l = Op(pv), where Bpen is one of the penalized regression coeflicient: ridge, lasso and
elastic-net.

Consider first the ridge regression coefficient, B The ridge regression estimator has the

ridge-*



advantage of having an explicit expression. We will show that HBridgeHQ < [|8]]2 for A > 0.

~ i~
Let denote T\ = XEUH;XSU + Mp, = D ics, X% M,, sample counterpart of T\ =

Ur

XEUXUD +AMp, = e, x;x; + M p,. Moreover, let M> > > j\pv be the eigenvalues
of 3 ic Sy xixiT /m; in decreasing order and v; the orthonormal corresponding eigenvectors,
j=1,...,py. Then, the eigenvalues of the matrix T\ are MAA> o+ A>... > j\pv + A >
A > 0 with the same eigenvectors v;,j = 1,...,p,. Using the same arguments as those

used in Hoerl and Kennard (1970), we obtain 3 = ?”:1(;\]- + A)flf/jVJTX:grng:ygv and

ridge
B = §;1(Xj)—lvjvjxgungjysv. Let denote by ¢; = v X § Ig'ys, € R, then

. Do 62 . Pu 2
||Brid e||§: A73<||,BH%: Aj for A >0.
: ; (A +A)? ; (A5)?

It follows that [|B,qgell2 < |Bll2 < |8l = Op(py) and we get [|Byiggellz = Op(pv)-
We now consider the lasso regression estimator, Blasso, which minimizes the design-based

version of the optimization problem given in (13) in the main article:

. _ 1
Blasso = arg min Z —(yi — Xz—'rﬂ)2 + Bl
perr  jcg, T

The lasso-estimator Blasso may be also obtained as the solution of a constrained optimization

problem:

. 1 T a2
min —(y; — x;
BERP T (yl 1 )
under the constraint
18]l <C,

for some small enough constant C' > 0. If the ordinary least-square estimator ﬁ satisfies the
constraint, namely if HBHI < C, then the solution of the constrained optimization problem
is Bl = 3; otherwise, if [|8|l1 > C, then the solution By, will be different from the
least-square estimator 8 and ||Bj,e|/1 < C < [|B]]1. So, in both cases, we have ||Byueoll1 <

181l = Op(po)-

Finally, consider the elastic-net regression estimator, ,C:}en. Consider the following objective



functions:

1

['ols(/B) = Z ;(yl - XiTﬁ)Q
€Sy "

Lan(B) = %(yz' —x; 8)% + M8l + A2IBl15 = Lois(B) + AilIBl11 + Xol8]13,
i€Sy "

where A\; = Aa and Ay = A\(1 — «) with A > 0 and o € (0,1). The cases « = 0 and o = 1
lead, respectively, to the ridge and lasso regression estimators which have been discussed
above. The ordinary least squares estimator B verifies B = argmingegy Lois(B) and the
elastic-net estimator verifies Ben = argmingepp Len(B). Since B minimizes Ly5(3), we have
Los(B) < Lois(B.,,). Similarly, we have Len(B.,,) < Len(Bys). Therefore, the following

inequalities hold:

Lots(B) + M|IBenllt + X2llBenll? < Lots(Ben) + Ml1Benllt + A2l1Benl 3 = Len(Ben)

< Lota(B) + MlIBlly + AlIBIIE = Len(Bors).
which implies
A 1Benllt + Ael1Benll3 < Ail1BI1 + A2l1BI15. (8)
Furthermore, since A1 > 0, we can write
221Benll3 < MlIBenllt + Aal|Benl 5. (9)
Using (8), (9) and the fact that ||BH2 <HB||1, we obtain
Mo |Benl 3 < MlIBl11 + Al Bl < MalIBl11 + Al BT

which implies

~ (8% ~ ~
1Benlls < T 1Bl +IBI[T = Op(2})

and so, HBenHQ = Op(py)-



Proof of Result 3.3

Result 3.3. Assume (H1)-(H4). Also, assume that there exists a positive constant C such
that )\max(XEUXUU) < C’Nv, where )\maw(XEvXUv) s the largest eigenvalue of X[TJUXUU.

Assume also that Ny, /A, = O(1).

1. Then, there exists a positive constant C such that E, [||Bridge\|%} < C and

(/%)

If the numbers of auxiliary variables {p,}ven and the sample sizes {ny}yen satisfy

1
Ny

~

IEp tridge —t

pu/ny = o(1), then N;lEp@idge —ty| = o(1).

2. EP(Hﬁridge_BridgeH%) = O(pv/nv)' Thus: ifpv/nv = 0(1)’ then Ep(”ﬁridge_éridgeH%) =
o(1).

3. We have the following asymptotic equivalence:

1 ~ 1 -~
ﬁ (tridge - ty) = ﬁ (tdiff,)\ - ty) + Op <iv> )

v v v

where
-
tAdiff,A = Z Yi/mi — (Z X/ — Z Xz‘) Bridge
1€Sy 1€Sy €Uy
and
1

—F
N, ?

~

tridge - ty =

If py = O(ng) with 0 < a < 1/2, then

o~

1 1 ~
F (tridge - ty) = F (tdjfﬁ)\ — ty) + 0p (1)

v

and
1 ~ 1
—E,|tidee — ty| = O .
Nv P dge ( /7n0>
Proof. 1. As in the proof of result (3.2), we consider the eigenvalues of the matrix T

in decreasing order: 5\1 + A > 5\2 +A> ... > j‘pv + A > X > 0. The matrix T)\ is



always invertible and the eigenvalues of T)\_l are 0 < (;\1 + )7t < (;\2 +A)7t<.. <

(;\pv +A)~! < A7L. We then obtain

1T 2 < AT, (10)
where || - ||2 is the spectral norm matrix defined for a squared p X p matrix A as

||All2 = supxerp|[x|jo0 | |AX]|2/[|x[|2. For a symmetric and positive definite matrix A,
we have that ||All2 = Amaz(A), where Mgz (A) is the largest eigenvalue of A. Now,

we can write

1 XiYi 1 T Yiliyedy 1 (7 T
I = o Xk = gV X XY
N, ies, i ll2 N, i€Uy LeUy, T T N,
1 5 1 T
< — — I Xy, X
< VB IX 0, X, e
where YT = (yll> . The symmetric and positive semi-definite N, x N, matrix
i/ ieU,

Xu, X ZU has the same non-null eigenvalues as those of the positive definite p, X p,

matrix X Ey Xuy,, Therefore,

1 . 1
X X e = —
NUH U, X, |2 N

(2

Amaz( X, Xv,) < C.

Using Assumptions (H1) and (H3), we have

-
P

1E€Sy

v

Finally, using also the fact that N,/A = O(1), we have

2 2
~ . XY 3 1 XY
Briaeel 3 <ITSHIB|| 30 22| < N2A2| |5 30 | =~ o).
ies, 112 ves, b2
It follows that
Ep [1Brage ] = O(1). (11)

To obtain the L! design-consistency of the ridge model-assisted estimator, we write as



in the proof of Result 3.1:

1 ~
ﬁ (tridgo - ty) = =~ Z Q3lYi — Z b]ﬁ] ridge
v Y iel,
T
- N Z QYi — <Z alxl) IBridge
ZEU’U ’LEU'U
and
1 1 2 S
Ep (tridge ty) < IEp F Z QY| + E N2 Z ;X5 Ep”ﬁridgeHZ
v Y ieU, i€U, 2

- o(i) oY) e (%)
by (3), (6), (1)

. We can write

Bridge - Eridge = f)jl <Z EM - Z EM) ) (12)

TT.
i€S, ¢ icU,

where E;\ = x;(y; —x;,@ﬁdge) with > Eiy = /\IpUBridge. Using the same arguments

as those used in the proof of Result 3.1, we get

1 i 1 Ny MAX; gl il |Tie — TiTp
| 0 2 3 | (4 M ) L5 g
v i€S, icUy v v YieU,
(13)
Furthermore,

NG Z HE2>\||2 2C2pv <Z + Z IBrldge > = O(pv) (14)

’LEUU €Uy €Uy

by Assumptions (H1) and (H4) and the fact that

1 ~
N Z(Xz—'rl@ridge)2 = rldge ( Z XX ) ridge = HIBrldgeH HX XUvH2 =0(1).

Yieu, Y ieu,
(15)

To obtain the above inequality, we have also used the fact that HBridgeHZ = 0Q)

8



which can be proved by using the same arguments as the ones used for showing that

1Buiagell2 = O(1) in point (1). Expressions (13) and (14) lead to

o) 0o

The result follows from (12), (16) and the fact that ||N,T5 |2 = O(1) :

2 3 Do
]EleBridge - ﬁridge”% =0 <n> . (17)

v

. We use the following decomposition:

T
1 1 1 -~ ~
N (tridge - ty) = N. (tdifﬂ)\ - ty) - Nv (Z Z Xl) <ﬁridge - Bridge) )

v v 1€S, €Uy

and

Ni (fairr — ty) = ]\1[v (Z = yz) -~ (Z - Xi>TBridge

v i€s, zer i€S, iel,

= A QY — § X, /Brldgea
Y ieU, Y ieU,

where o; = I;/m; — 1,0 € U,. From (3), we have that Nv_QEp(Zier aiyi)? = O(nyt)
- 2
and we can get N, °E, (Zier aixjﬁridge) = O(n; ') by using similar arguments as

those used in the proof of Result 3.1 and (15). We obtain

1

~ 2 1
ﬁng (tdiff)\ — ty) = (m) :

The result follows since

1 2

< E]Ep 75diff,/\ - ty

- ol

by using (6) and (17).

_|_

Ep Bridge - ﬂridge
2




Proof of Proposition 3.1

Proposition 3.1. Suppose assumptions (H1)-(H3) and that the sampling design and the X -
variables are such that the columns of Hgvl/QXSU are orthogonal. Suppose also that there

exist positive quantities C3 and Cy such that maxj—1,. p, N,

mmj:l,-u,vav_l ZieUU x%j > Cy4 > 0. Then, Nv_l(?greg —ty) = Op(\/pv/nv) and Nv_l(?pen -
ty) = Op(\/Do/10), where then denotes either the lasso or the elastic-net estimator.

Yiew, Tij < C3 < o0 and

Proof. From the proof of Result 3.1 (more specifically, Equations 5 and 6), we need to show
that Y,y |[xil[3/Ny = O(py) and that H,[Ai||2 = Op(1). The same result holds for Blasso
and B,,. We have e, |[xill3/Ny = DD e, w?j/Nv < ppv/C3 = O(py) under the
assumption of uniformly bounded forth moment of X;,j =1,...,p,.

We first show that, under the assumed orthogonality condition, HBlaSSOHg < HBHQ,
1Benll2 < [18l|2 and also [|B]|2 = Op(1).

Consider again the objective function £,;5(3) as in the proof of Result 3.2. We can write

LosB) = S Swi-xI B2 =3 (G- % B (18)

ieS, i€,

where §; = y;//m and X; = (:%ij)?”ﬂ = x;/y/m for all i € S,. Let XSH = H;:/ZXSU =

(%] )ies, = (X1,..., va). The columns of XSU, denoted by Xj,j =1,...,p, are assumed to
be orthogonal. This means that X;—Xk = 0 for j # k. The ordinary least-square estimator B
is given by

B =(X§Xs,) ' X,5s,.

Under the orthogonality condition, ngfigv is a diagonal matrix with diagonal elements
2

given by ||X,|3 = D ies, :E?j = Y ics, =» Which corresponds to the Horvitz-Thompson

estimator of Zier x% Therefore, B = (Bj)jesq, and the j-th coordinate is given by Bj =
~2\—1 S~
(Xies, xij) > ies, Tijli-

The lasso estimator Blasso = (Bj,lasso)f”zl as well as the elastic-net estimator Ben =

(Bj,en)?ﬂﬂ are obtained by using the cyclic soft-thresholding algorithm (Hastie et al., 2011):

A ~ S\(ies, Tistij)
Bj,lasso - ~9
> ies, Lij

10



and
B = Sra(Dies, Tijtis)
J,en Z?:Ul -%12]‘ + )\(1 —_ a)v

where 7i; = §i — > ZiuBr and Sx(z) = sign(z)(|z| — \)4 is the soft-thresholding function
with (|z] = A); = |z| = N if |z| > A, and zero otherwise. If the columns of Xg, are orthogonal,
then Zz‘esv TijTij = Zz‘eSv Z;j9; and Bj,lasso is the soft-threshold estimator of the least-square

estimator (3;:

; _ S(Des, Ti¥i)
5j,lasso - ~9 .
> ics, Tij
The elastic-net estimator is given by
. Sxa(Dies, Tij¥i)

/6',611 - o .
J ZiGSU asgj + A1 - a)

It follows that

|B'1 ‘_ |(|Ziesvjijgi|_)‘)+| < |Ziesvjijgi| _‘B| j=1 P
Jasso| = = >~ = = ) =Ly P
’ > ies, xzzj > ies, xzzj ’
and H/BIassoH2 < ||BH2 Simﬂarly? HI@enHQ < H/6||2
We now show that ||3]]y = Op(1). We have
1812 < [|Nw(X 5, Xs,) ]2 FXLS’SU
v 2

~ o~ 2
The matrix Xgﬂ X, is diagonal with diagonal elements equal to > ;g g:j . Then,

o 1
1Ny (X5, X5,) 7 2 = Max |
o Nv ZiESv 7'I';7

and for all j=1,...,p,:

1 1 1
= + 0O <> = 0,(1)
2 —1 p p
Nl Yies, 2 N Kiew, Vi

v T

by wusing (H2), (H3) and the assumption of uniformly bounded fourth moment

of Xj,5 = 1,...,p,. We have also used the fact that 1/(N,U_12ieUua:?j) <

11



1/(minj=1 _p, Ny' Yiep, #3;) < 1/Cy = O(1) for all j =1,...,p,. Then,

[INo(X 5, X5,) " |2 = Op(1). (19)
Now,
1 - 2 1 1 - -
— X ysll < l7s s || Xs, X1
| Xbas | < gl 8| R X3 |
We have
Hle X1 :H1XT Xs || = max 12%2] max inQ < +/Cs
NU v4>Sy ) Nv Sy v ) j=1,....p0 Nv by i j=1,....py Nv 5 1) >~
and
1. 5 1 y? 1 . _ Ch
_ - Tl < 2« =
sl = D < o LW S

by Assumption (H1). So, HN%JXSvySng = O(1) and combined with (19), we obtain ||B|]2 =
Op(1).
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